834 resultados para plastic dilatancy


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adaptive phenotypic plasticity, the ability of an organism to change its phenotype to match local environments, is increasingly recognized for its contribution to evolution. However, few empirical studies have explored the molecular basis of plastic traits. The East African cichlid fish Astatoreochromis alluaudi displays adaptive phenotypic plasticity in its pharyngeal jaw apparatus, a structure that is widely seen as an evolutionary key innovation that has contributed to the remarkable diversity of cichlid fishes. It has previously been shown that in response to different diets, the pharyngeal jaws change their size, shape and dentition: hard diets induce an adaptive robust molariform tooth phenotype with short jaws and strong internal bone structures, while soft diets induce a gracile papilliform tooth phenotype with elongated jaws and slender internal bone structures. To gain insight into the molecular underpinnings of these adaptations and enable future investigations of the role that phenotypic plasticity plays during the formation of adaptive radiations, the transcriptomes of the two divergent jaw phenotypes were examined. Our study identified a total of 187 genes whose expression differs in response to hard and soft diets, including immediate early genes, extracellular matrix genes and inflammatory factors. Transcriptome results are interpreted in light of expression of candidate genesmarkers for tooth size and shape, bone cells and mechanically sensitive pathways. This study opens up new avenues of research at new levels of biological organization into the roles of phenotypic plasticity during speciation and radiation of cichlid fishes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particle analysis methodology is presented, together with the morphology of the wear debris formed during rolling contact fatigue. Wear particles are characterised by their surface topography and in terms of wear mechanism. Rail-wheel materials are subjected to severe plastic deformation as the contact loading progresses, which contributes to a mechanism of major damage in head-hardened rail steel. Most of the current methodologies involve sectioning of the rail-wheel discs to trace material damage phenomena such as crack propagation and plastic strain accumulation. This paper proposes methodology to analyse the development of the plastically deformed layer by sectioning wear particles using the focussed ion beam (FIB) milling method. Moreover, it highlights the processes of oxidation and rail surface delamination during unlubricated rolling contact fatigue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The “third-generation” 3D graphene structures, T-junction graphene micro-wells (T-GMWs) are produced on cheap polycrystalline Cu foils in a single-step, low-temperature (270 °C), energy-efficient, and environment-friendly dry plasma-enabled process. T-GMWs comprise vertical graphene (VG) petal-like sheets that seemlessly integrate with each other and the underlying horizontal graphene sheets by forming T-junctions. The microwells have the pico-to-femto-liter storage capacity and precipitate compartmentalized PBS crystals. The T-GMW films are transferred from the Cu substrates, without damage to the both, in de-ionized or tap water, at room temperature, and without commonly used sacrificial materials or hazardous chemicals. The Cu substrates are then re-used to produce similar-quality T-GMWs after a simple plasma conditioning. The isolated T-GMW films are transferred to diverse substrates and devices and show remarkable recovery of their electrical, optical, and hazardous NO2 gas sensing properties upon repeated bending (down to 1 mm radius) and release of flexible trasparent display plastic substrates. The plasma-enabled mechanism of T-GMW isolation in water is proposed and supported by the Cu plasma surface modification analysis. Our GMWs are suitable for various optoelectronic, sesning, energy, and biomedical applications while the growth approach is potentially scalable for future pilot-scale industrial production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mixed convection laminar two-dimensional boundary-layer flow of non-Newtonian pseudo-plastic fluids is investigated from a horizontal circular cylinder with uniform surface heat flux using a modified power-law viscosity model, that contains no unrealistic limits of zero or infinite viscosity; consequently, no irremovable singularities are introduced into boundary-layer formulations for such fluids. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear systems of partial differential equations are solved numerically applying marching order implicit finite difference method with double sweep technique. Numerical results are presented for the case of shear-thinning fluids in terms of the fluid temperature distributions, rate of heat transfer in terms of the local Nusselt number.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants (BFRs) once extensively used in the plastics of a wide range of consumer products. The listing of certain congeners that are constituents of commercial PBDE mixtures (including c-octaBDE) in the Stockholm Convention and tightening regulation of many other BFRs in recent years have created the need for a rapid and effective method of identifying BFR-containing plastics. A three-tiered testing strategy comparing results from non-destructive testing (X-ray fluorescence (XRF)) (n = 1714), a surface wipe test (n = 137) and destructive chemical analysis (n = 48) was undertaken to systematically identify BFRs in a wide range of consumer products. XRF rapidly identified bromine in 92% of products later confirmed to contain BFRs. Surface wipes of products identified tetrabromobisphenol A (TBBPA), c-octaBDE congeners and BDE-209 with relatively high accuracy (> 75%) when confirmed by destructive chemical analysis. A relationship between the amounts of BFRs detected in surface wipes and subsequent destructive testing shows promise in predicting not only the types of BFRs present but also estimating the concentrations present. Information about the types of products that may contain persistent BFRs will assist regulators in implementing policies to further reduce the occurrence of these chemicals in consumer products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Finite element analysis (FEA) models of uniaxial loading of pumpkin peel and flesh tissues were developed and validated using experimental results. The tensile model was developed for both linear elastic and plastic material models, the compression model was develop d only with the plastic material model. The outcomes of force versus time curves obtained from FEA models followed similar pattern to the experimental curves however the curve resulted with linear elastic material properties had a higher difference with the experimental curves. The values of predicted forces were determined and compared with the experimental curve. An error indicator was introduced and computed for each case and compared. Additionally Root Mean Square Error (RMSE) values were also calculated for each model and compared. The results of modelling were used to develop material model for peel and flesh tissues in FEA modelling of mechanical peeling of tough skinned vegetables.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By using the method of characteristics, the effect of footing-soil interface friction angle (delta) on the bearing capacity factor N-gamma was computed for a strip footing. The analysis was performed by employing a curved trapped wedge under the footing base; this wedge joins the footing base at a distance B-t from the footing edge. For a given footing width (B), the value of B-t increases continuously with a decrease in delta. For delta = 0, no trapped wedge exists below the footing base, that is, B-t/B = 0.5. On the contrary, with delta = phi, the point of emergence of the trapped wedge approaches toward the footing edge with an increase in phi. The magnitude of N-gamma increases substantially with an increase in delta/phi. The maximum depth of the plastic zone becomes higher for greater values of delta/phi. The results from the present analysis were found to compare well with those reported in the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The demand for tunnelling and underground space creation is rapidly growing due to the requirement of civil infrastructure projects and urbanisation. Blasting remains the most inexpensive method of underground excavations in hard rock. Unfortunately, there are no specific safety guidelines available for the blasted tunnels with regards to the threshold limits of vibrations caused by repeated blasting activity in the close proximity. This paper presents the results of a comprehensive study conducted to find out the effect of repeated blast loading on the damage experienced by jointed basaltic rock mass during tunnelling works. Conducting of multiple rounds of blasts for various civil excavations in a railway tunnel imparted repeated loading on rock mass of sidewall and roof of the tunnel. The blast induced damage was assessed by using vibration attenuation equations of charge weight scaling law and measured by borehole extensometers and borehole camera. Ground vibrations of each blasting round were also monitored by triaxial geophones installed near the borehole extensometers. The peak particle velocity (V-max) observations and plastic deformations from borehole extensometers were used to develop a site specific damage model. The study reveals that repeated dynamic loading imparted on the exposed tunnel from subsequent blasts, in the vicinity, resulted in rock mass damage at lesser vibration levels than the critical peak particle velocity (V-cr). It was found that, the repeated blast loading resulted in the near-field damage due to high frequency waves and far-field damage due to low frequency waves. The far field damage, after 45-50 occurrences of blast loading, was up to 55% of the near-field damage in basaltic rock mass. The findings of the study clearly indicate that the phenomena of repeated blasting with respect to number of cycles of loading should be taken into consideration for proper assessment of blast induced damage in underground excavations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uniaxial compression experiments on 0.3, 1 and 3 mu m diameter micropillars of a Zr-based bulk metallic glass in as-cast, shot-peened and structurally relaxed conditions were conducted. Shear band formation and stable propagation is observed to be the plastic deformation mode in all cases, with no detectable difference in yield strength according to either size or condition. The limitations of uniaxial compression tests in assessing the influence of various material conditions on plasticity, when it is inhomogeneous in nature, are illustrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the results of laboratory investigation carried out on Ahmedabad sand on the liquefaction and pore water pressure generation during strain controled cyclic loading. Laboratory experiments were carried out on representative natural sand samples (base sand) collected from earthquake-affected area of Ahmedabad City of Gujarat State in India. A series of strain controled cyclic triaxial tests were carried out on isotropically compressed samples to study the influence of different parameters such as shear strain amplitude, initial effective confining pressure, relative density and percentage of non-plastic fines on the behavior of liquefaction and pore water pressure generation. It has been observed from the laboratory investigation that the potential for liquefaction of the sandy soils depends on the shear strain amplitude, initial relative density, initial effective confining pressure and non-plastic fines. In addition, an empirical relationship between pore pressure ratio and cycle ratio independent of the number of cycles of loading, relative density, confining pressure, amplitude of shear strain and non-plastic fines has been proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flow and heat transfer problem in the boundary layer induced by a continuous moving surface is important in many manufacturing processes in industry such as the boundary layer along material handling conveyers, the aerodynamic extrusion of plastic sheet, the cooling of an infinite metalic plate in a cooling bath (which may also be electrolyte). Glass blowing, continuous casting and spinning of fibres also involve the flow due to a stretching surface. Sakiadis [1] was the first to study the flow induced by a semi-infinite moving wall in an ambient fluid. On the other hand, Crane [2] first studied the flow over a linearly stretching sheet in an ambient fluid. Subsequently, Crane [3] also investigated the corresponding heat transfer problem. Since then several authors [4-8] have studied various aspects of this problem such as the effects of mass transfer, variable wall temperature, constant heat flux, magnetic field etc. Recently, Andersson [9] has obtained an exact solution of the Navier-Stokes equations for the MHD flow over a linearly stretching sheet in an ambient fluid. Also Chiam [10] has studied the heat transfer with variable thermal conductivity on a stretching sheet when the velocities of the sheet and the free stream are equal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experimental investigation into the dynamic strain ageing (DSA) of a wrought Ni-base superalloy 720Li was conducted. Characteristics of jerky, flow have been studied at intermediate temperatures of 350, 400 and 450 degrees C at strain-rates between 10(-3) and 10(-5) s(-1). Serrations of Type C are predominant within the temperature/strain-rate range explored. The major characteristics of the serrations-i.e. (a) critical plastic strain for onset of serrations, epsilon(c); (b) average stress decrement, Delta sigma(avg); and (c) strain increment between serrations. Delta epsilon(BS)-have been examined at selected temperatures and strain-rates. Negative strain-rate sensitivity was observed in the DSA regime. However. temperature did not influence tensile properties such as yield strength, ultimate strength. elongation, reduction in area, and work hardening rate or fracture features in DSA regime. Analysis of the results Suggests that locking of the mobile dislocations by substitutional alloying elements is responsible for the DSA in alloy 720Li.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of dual-phase (DP) steels containing finely dispersed martensite with different volume fractions of martensite (V-m) were produced by intermediate quenching of a boron- and vanadium-containing microalloyed steel. The volume fraction of martensite was varied from 0.3 to 0.8 by changing the intercritical annealing temperature. The tensile and impact properties of these steels were studied and compared to those of step-quenched steels, which showed banded microstructures. The experimental results show that DP steels with finely dispersed microstructures have excellent mechanical properties, including high impact toughness values, with an optimum in properties obtained at similar to 0.55 V-m. A further increase in V-m was found to decrease the yield and tensile strengths as well as the impact properties. It was shown that models developed on the basis of a rule of mixtures are inadequate in capturing the tensile properties of DP steels with V-m > 0.55. Jaoul-Crussard analyses of the work-hardening behavior of the high-martensite volume fraction DP steels show three distinct stages of plastic deformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The occurrence of a maximum in the percentage of intergranular fracture on the fracture surface during the transition from intermediate to low fatigue crack growth rates has been observed for a high strength steel. It is suggested that transgranular planar slip leading to slip localization is essential in promoting intergranular fracture when the cyclic plastic zone size becomes equal to the prior austenite grain size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I-Methylcyclopropene (1-MCP) has the potential in tomato to reduce ethylene-associated changes in texture. Tomato cv. 'Revolution' was harvested at the 'pink' maturity stage and whole fruit treated with 0, 0.1, 1.0 or 10.0 µL.L-' 1-MCP at 20 "C for 12 h. Slices of 7-mm thickness were cut using a commercial slicer, and the slices stored in vertical stacks in plastic containers at 5°C for 7 days. The application of 1-MCP reduced both ethylene production and respiration rate of slices and resulted in firmer pericarp firmness. Ethylene production was 24%, 40%, and 62% lower following 0.1, 1.0, 10.0 µL L-' 1-MCP, respectively, compared with controls. In addition, respiration rate was reduced 6%, 10% and 20% by those 1-MCP treatments. 1-MCP treatments produced 20%, 34%, and 24% higher pericarp firmness, respectively, than in fruit not treated with 1-MCP.