928 resultados para photocatalysis hydrolysis of biomass selective oxidation gold and silver nanoparticles titania
Resumo:
Prior to the last few years little practical use was made of the element tellurium, which is obtained from gold and silver tellurides and from the slimes of electrolytic copper refineries. Lately, however, more study has been made of its properties when alloyed with other metals. It was the purpose of this thesis to study the effects of the addition of tellurium to lead, particularly in small amounts.
Resumo:
An amalgam is an alloy of mercury with other metals, and amalgamation is the art of making or forming amalgams. In metallurgical language the word is limited to the means adopted for the recovery of gold and silver from their ores by the use of mercury.
Resumo:
Carbon and carbonaceous material have been known to have a deleterious effect upon the cyanidation of gold and silver ores since the very beginning of the process. Organic matter is a common source of impurities in cyanide solution, its reducing effect being notorious.
Resumo:
The Purpose of this thesis was to investigate the possibility of concentrating scheelite from Wilfley table gold concentrates from the mill of the Jardine Mining Company; and to determine whether such concentration is economically feasible and the product of sufficiently high grade to meet commercial specifications for such a product.
Resumo:
The aqueous phase processing of glyoxylic acid, pyruvic acid, oxalic acid and methylglyoxal was studied simulating dark and radical free atmospheric aqueous aerosol. A novel observation of the cleavage of a carbon-carbon bond in pyruvic acid and glyoxylic acid leading to their decarboxylation was made in the presence of ammonium salts but no decarboxylation was observed from oxalic acid. The empirical rate constants for decarboxylation were determined. The structure of the acid, ionic environment of solution and concentration of species found to affect the decarboxylation process. A tentative set of reaction mechanisms was proposed involving nucleophilic attack by ammonia on the carbonyl carbon leading to fragmentation of the carbon-carbon bond between the carbonyl and carboxyl carbons. Whereas, the formation of high molecular weight organic species was observed in the case of methylglyoxal. The elemental compositions of the species were determined. It was concluded that, additional pathways that are not currently known likely contribute to aqueous phase processing leading to high molecular weight organic species. Under similar conditions in atmospheric aerosol, the aqueous phase processing will markedly impact the physicochemical properties of aerosol.
Resumo:
The purpose of this investigation was to ascertain if advantage could be taken of the copper in the precipitates as a collecting agent of the precious metals in the direct smelting furnace.The products produced to be low grade anode bullion and a slag low in precious metals, high in zinc and lead.
Resumo:
When aluminum is allowed to stand in air or is heated in air, a thin oxide film is produced on the metal. If aluminum is made the anode in a suitable electrolyte and a current applied, a coating is obtained which is similar to that produced in air, but may be effected much quicker. This film is thicker, harder, more resistant to corrosion and abrasion, and more adhesive than the natural oxide. The film is porous and makes an excellent adsorptive for dyes and pigments.
Resumo:
In this study, we present the development and the characterization of a generic platform for cell culture able to monitor extracellular ionic activities (K+, NH4+) for real-time monitoring of cell-based responses, such as necrosis, apoptosis, or differentiation. The platform for cell culture is equipped with an array of 16 silicon nitride micropipet-based ion-selective microelectrodes with a diameter of either 2 or 6 microm. This array is located at the bottom of a 200-microm-wide and 350-microm-deep microwell where the cells are cultured. The characterization of the ion-selective microelectrode arrays in different standard and physiological solutions is presented. Near-Nernstian slopes were obtained for potassium- (58.6 +/- 0.8 mV/pK, n = 15) and ammonium-selective microelectrodes (59.4 +/- 3.9 mV/pNH4, n = 13). The calibration curves were highly reproducible and showed an average drift of 4.4 +/- 2.3 mV/h (n = 10). Long-term behavior and response after immersion in physiological solutions are also presented. The lifetime of the sensors was found to be extremely long with a high recovery rate.
Resumo:
We report a combined experimental and theoretical investigation of the length dependence and anchor group dependence of the electrical conductance of a series of oligoyne molecular wires in single-molecule junctions with gold contacts. Experimentally, we focus on the synthesis and properties of diaryloligoynes with n = 1, 2, and 4 triple bonds and the anchor dihydrobenzo[b]thiophene (BT). For comparison, we also explored the aurophilic anchor group cyano (CN), amino (NH2), thiol (SH), and 4-pyridyl (PY). Scanning tunneling microscopy break junction (STM-BJ) and mechanically controllable break junction (MCBJ) techniques are employed to investigate single-molecule conductance characteristics. The BT moiety is superior as compared to traditional anchoring groups investigated so far. BT-terminated oligoynes display a 100% probability of junction formation and possess conductance values which are the highest of the oligoynes studied and, moreover, are higher than other conjugated molecular wires of similar length. Density functional theory (DFT)-based calculations are reported for oligoynes with n = 1−4 triple bonds. Complete conductance traces and conductance distributions are computed for each family of molecules. The sliding of the anchor groups leads to oscillations in both the electrical conductance and the binding energies of the studied molecular wires. In agreement with experimental results, BT-terminated oligoynes are predicted to have a high electrical conductance. The experimental attenuation constants βH range between 1.7 nm−1 (CN) and 3.2 nm−1 (SH) and show the following trend: βH(CN) < βH(NH2) < βH(BT) < βH(PY) ≈ βH(SH). DFT-based calculations yield lower values, which range between 0.4 nm−1 (CN) and 2.2 nm−1 (PY).
Resumo:
Coat color and pattern variations in domestic animals are frequently inherited as simple monogenic traits, but a number are known to have a complex genetic basis. While the analysis of complex trait data remains a challenge in all species, we can use the reduced haplotypic diversity in domestic animal populations to gain insight into the genomic interactions underlying complex phenotypes. White face and leg markings are examples of complex traits in horses where little is known of the underlying genetics. In this study, Franches-Montagnes (FM) horses were scored for the occurrence of white facial and leg markings using a standardized scoring system. A genome-wide association study (GWAS) was performed for several white patterning traits in 1,077 FM horses. Seven quantitative trait loci (QTL) affecting the white marking score with p-values p≤10(-4) were identified. Three loci, MC1R and the known white spotting genes, KIT and MITF, were identified as the major loci underlying the extent of white patterning in this breed. Together, the seven loci explain 54% of the genetic variance in total white marking score, while MITF and KIT alone account for 26%. Although MITF and KIT are the major loci controlling white patterning, their influence varies according to the basic coat color of the horse and the specific body location of the white patterning. Fine mapping across the MITF and KIT loci was used to characterize haplotypes present. Phylogenetic relationships among haplotypes were calculated to assess their selective and evolutionary influences on the extent of white patterning. This novel approach shows that KIT and MITF act in an additive manner and that accumulating mutations at these loci progressively increase the extent of white markings.
Resumo:
The Jak-stat pathway is critical for cellular proliferation and is commonly found to be deregulated in many solid tumors as well as hematological malignancies. Such findings have spurred the development of novel therapeutic agents that specifically inhibit Jak2 kinase, thereby suppressing tumor cell growth. Tyrphostin AG490, the first described Jak2 inhibitor, displays poor pharmacology and requires high concentrations for anti-tumor activities. Our research group screened a small library of AG490 structural analogues and identified WP1130 as a potent inhibitor of Jak2 signaling. However, unlike AG490, WP1130 did not directly inhibit Jak2 kinase activity. Our results show that WP1130 induces rapid ubiquitination and subsequent re-localization of Jak2 into signaling incompetent aggresomes. In addition to Jak2, WP1130 also induces accumulation of other ubiquitinated proteins without inhibiting 20S proteasome activity. Further analysis of the mechanism of action of WP1130 revealed that WP1130 acts as a partly selective DUB inhibitor. It specifically inhibits the deubiquitinase activity of USP9x, USP5, USP14 and UCH37. WP1130 mediated inhibition of tumor-associated DUBs resulted in down-regulation of anti-apoptotic and up-regulation of pro-apoptotic proteins, such as MCL-1 and p53 respectively. Our results demonstrate that chemical modification of a previously described Jak2 inhibitor results in the unexpected discovery of a novel compound which acts as a DUB inhibitor, suppressing Jak-Stat signaling by a novel mechanism.
Resumo:
The loss of skeletal muscle mass is believed to be the dominant reason for reduced strength in aging humans. The purpose of this investigation was to gain some information as to why skeletal muscles lose mass as we age. Since nervous system innervation is essential for skeletal muscle fiber viability, incomplete regional reinnervation during normal synaptic junction turnover has been hypothesized to result in selective muscle fiber loss. Examined here was the age-related association in skeletal muscle between atrophy and the expression of mRNAs encoding the γ- and ϵ-subunits of the nicotinic acetylcholine receptor, myogenin, and muscle specific receptor kinase (MuSK). Gastrocnemius and biceps brachii muscles were collected from young (2 month), adult (18 month), and old (31 month) Fischer 344 cross brown Norway F 1 male rats. In the gastrocnemius, muscles of old vs. young and adult rats, lower muscle mass was accompanied by significantly elevated acetylcholine receptor γ-subunit, myogenin, and MuSK mRNA levels. In contrast, the biceps brachii muscle in the same animals exhibited neither atrophy nor a change in acetylcholine receptor γ-subunit, myogenin, or MuSK mRNA levels. Expression of the acetylcholine receptor ϵ-subunit mRNA did not change with age in either gastrocnemius or biceps brachii muscles. Since acetylcholine receptor γ-subunit, myogenin, and MuSK mRNA levels are upregulated in surgically denervated skeletal muscles of young rats while expression of the acetylcholine receptor ϵ-subunit does not change, the findings of the current investigation suggest that a select fiber population within atrophied skeletal muscles of old rats may be in a denervated-like state. I speculate that increases in γ-subunit, myogenin, and MuSK mRNA levels in atrophied muscles of old rats are compensatory responses to nerve terminal retraction. Indeed, a prolongation of denervation in these muscle fibers would subsequently result in their atrophy and death, ultimately leading to a decline in the number of force generating elements present in the muscle. ^
Resumo:
Glutathione (GSH) is involved in the detoxication of numerous chemicals exogenously exposed or endogenously generated. Exposure to these agents cause depletion of cellular GSH rendering these cells more susceptible to the toxic action of these same agents. Formaldehyde (CH(,2)O) was found to deplete cellular GSH, presumably by the formation of the GSH-CH(,2)O complex, S-hydroxymethylglutathione, and its rapid extrusion into the extracellular medium.^ The metabolism and toxicity of CH(,2)O were determined to be dependent upon cellular GSH in vitro and in vivo. The rate of CH(,2)O oxidation decreased and the extent of toxicity increased when isolated rat hepatocytes or strain A/J mice were pretreated with the GSH-depleting agent, diethyl maleate (DEM). Additional experiments were designed to further study the role GSH plays in detoxication using isolated rat hepatocytes.^ L-Methionine protected against the extent of lipid peroxidation and leakage of the cytosolic enzyme, lactate dehydrogenase (LDH), caused by CH(,2)O in DEM-pretreated hepatocytes, further supporting the protective role of GSH against cellular toxicity. The antioxidants, ascorbate, butylated hydroxytoluene, and (alpha)-tocopherol, were all protective against the extent of lipid peroxidation and leakage of LDH in isolated rat hepatocytes. Whereas L-methionine may be protective by increasing the cellular concentration of GSH which is used to detoxify free radicals or by facilitating the rate of CH(,2)O oxidation, the antioxidant, ascorbate, was protective without altering the rate of CH(,2)O oxidation or increasing cellular GSH levels. These results suggest that the free radical-mediated toxicity caused by CH(,2)O in DEM-pretreated hepatocytes is due to the further depletion of GSH by CH(,2)O and not to increased CH(,2)O persistence. How this further depletion in GSH by CH(,2)O in DEM-pretreated hepatocytes results in lipid peroxidation and cell death was further investigated.^ The further decrease in GSH caused by CH(,2)O in DEM-pretreated hepatocytes, suspected of stimulating lipid peroxidation and cell death, was found not to be due to depletion of mitochondrial GSH but to depletion of protein sulfhydryl groups. In addition, cellular toxicity appears more closely correlated with depletion of protein sulfhydryl groups than with an increase in cytosolic free Ca('2+). The combination of CH(,2)O and DEM may be a useful tool in identifying these critical sulfhydryl-protein(s) and to further understand the role GSH plays in detoxication. ^
Resumo:
Fire has an influence on regional to global atmospheric chemistry and climate. Molecular markers of biomass burning archived in lake sediments are becoming increasingly important in paleoenvironmental reconstruction and may help determine the interaction between climate and fire activity. Here, we present a high performance anion exchange chromatography–mass spectrometry method to allow separation and analysis of levoglucosan, mannosan and galactosan in lake sediments, with implications for reconstructing past biomass burning events. Determining mannosan and galactosan in Lake Kirkpatrick, New Zealand (45.03°S, 168.57°E) sediment cores and comparing these isomers with the more abundant biomass burning markers levoglucosan and charcoal represents a significant advancement in our ability to analyze past fire activity. Levoglucosan, mannosan and galactosan concentrations correlated significantly with macroscopic charcoal concentration. Levoglucosan/mannosan and levoglucosan/(mannosan + galactosan) ratios may help determine not only when fires occurred, but also if changes in the primary burned vegetation occurred.