962 resultados para pedalitin 6 o beta glucopyranoside
Resumo:
In the structure of the 1:1 proton-transfer compound of brucine with 2-(2,4,6-trinitroanilino)benzoic acid C23H27N2O4+ . C13H7N4O8- . H~2~O, the brucinium cations form the classic undulating ribbon substructures through overlapping head-to-tail interactions while the anions and the three related partial water molecules of solvation (having occupancies of 0.73, 0.17 and 0.10) occupy the interstitial regions of the structure. The cations are linked to the anions directly through N-H...O(carboxyl) hydrogen bonds and indirectly by the three water molecules which form similar conjoint cyclic bridging units [graph set R2/4(8)] through O-H...O(carbonyl) and O(carboxyl) hydrogen bonds, giving a two-dimensional layered structure. Within the anion, intramolecular N-H...O(carboxyl) and N H...O(nitro) hydrogen bonds result in the benzoate and picrate rings being rotated slightly out of coplanarity inter-ring dihedral angle 32.50(14)\%]. This work provides another example of the molecular selectivity of brucine in forming stable crystal structures and also represents the first reported structure of any form of the guest compound 2-(2,4,6-trinitroanilino)benzoic acid.
Resumo:
The mineral woodhouseite CaAl3(PO4,SO4)2(OH)6 is a hydroxy phosphate-sulphate mineral belonging to the beudantite subgroup of alunites, and has been characterised by Raman spectroscopy, complimented with infrared spectroscopy. Bands at various wavenumbers were assigned to the different vibrational modes of woodhouseite, which were then associated to the molecular structure of the mineral. Bands were primarily assigned to phosphate and sulphate stretching and bending modes. Two symmetric stretching modes for both phosphate and sulphate supported the concept of non-equivalent phosphate and sulphate units in the mineral structure. Bands in the OH stretching region enabled hydrogen bond distances to be calculated.
Resumo:
The objective of this research is to determine the molecular structure of the mineral hinsdalite using vibrational spectroscopy. The mineral hinsdalite (Pb,Sr)Al3(PO4,SO4)2(OH)6 is a hydroxy phosphate-sulphate mineral belonging to the beudantite subgroup of alunites. The mineral is interesting because it contains two oxyanions, phosphate and sulphate, which is unusual. The formation of hinsdalite offers a mechanism for the removal of phosphate from the environment. The mineral has been characterised by Raman spectroscopy and infrared spectroscopy. The spectra are then related to the molecular structure of the mineral. Bands at various wavenumbers are assigned to the different vibrational modes of hinsdalite, which were then associated to the molecular structure of the mineral. Bands were primarily assigned to phosphate and sulphate stretching and bending modes. The Raman spectrum is characterised by an intense sharp band at 982 cm-1 with a component band at 997 cm-1 assigned to the ν1 (PO4)3- symmetric stretching modes. Two symmetric stretching modes for both phosphate and sulphate supported the concept of non-equivalent phosphate and sulphate units in the mineral structure. Bands in the OH stretching region enabled hydrogen bond distances to be calculated. Hinsdalite is characterised by disordered phosphate/sulphate tetrahedra and non-equivalent phosphate units are observed in the vibrational spectrum of hinsdalite.
Resumo:
Understanding the complex mechanisms underlying bone remodeling is crucial to the development of novel therapeutics. Glycosaminoglycans (GAGs) localised to the extracellular matrix (ECM) of bone are thought to play a key role in mediating aspects of bone development. The influence of isolated GAGs was studied by utilising in vitro murine calvarial monolayer and organ culture model systems. Addition of GAG preparations extracted from the cell surface of human osteoblasts at high concentrations (5 microg/ml) resulted in decreased proliferation of cells and decreased suture width and number of bone lining cells in calvarial sections. When we investigated potential interactions between the growth factors fibroblast growth factor-2 (FGF2), bone morphogenic protein-2 (BMP2) and transforming growth factor-beta1 (TGFbeta1) and the isolated cell surface GAGs, differences between the two model systems emerged. The cell culture system demonstrated a potentiating role for the isolated GAGs in the inhibition of FGF2 and TGFbeta1 actions. In contrast, the organ culture system demonstrated an enhanced stimulation of TFGbeta1 effects. These results emphasise the role of the ECM in mediating the interactions between GAGs and growth factors during bone development and suggest the GAG preparations contain potent inhibitory or stimulatory components able to mediate growth factor activity.
Resumo:
Aim: To review the management of heart failure in patients not enrolled in specialist multidisciplinary programs. Method: A prospective clinical audit of patients admitted to hospital with either a current or past diagnosis of heart failure and not enrolled in a specialist heart failure program or under the direct care of the cardiology unit. Results: 81 eligible patients were enrolled (1 August to 1 October 2008). The median age was 81 9.4 years and 48% were male. Most patients (63%) were in New York Heart Association Class II or Class III heart failure. On discharge, 59% of patients were prescribed angiotensin converting enzyme inhibitors and 43% were prescribed beta-blockers. During hospitalisation, 8.6% of patients with a past diagnosis of heart failure were started on an angiotensin converting enzyme inhibitor and 4.9% on a beta-blocker. There was evidence of suboptimal dosage on admission and discharge for angiotensin converting enzyme inhibitors (19% and 7.4%) and beta-blockers (29% and 17%). The results compared well with international reports regarding the under-treatment of heart failure. Conclusion: The demonstrated practice gap provides excellent opportunities for the involvement of pharmacists to improve the continuation of care for heart failure patients discharged from hospital in the areas of medication management review, dose titration and monitoring.
Resumo:
Background: The aims of this study were to determine the documentation of pharmacotherapy optimization goals in the discharge letters of patients with the principal diagnosis of chronic heart failure. Methods: A retrospective practice audit of 212 patients discharged to the care of their local general practitioner from general medical units of a large tertiary hospital. Details of recommendations regarding ongoing pharmacological and non-pharmacological management were reviewed. The doses of medications on discharge were noted and whether they met current guidelines recommending titration of angiotensin-converting enzyme inhibitors and beta-blockers. Ongoing arrangements for specialist follow up were also reviewed. Results: The mean age of patients whose letters were reviewed was 78.4 years (standard deviation ± 8.6); 50% were men. Patients had an overall median of six comorbidities and eight regular medications on discharge. Mean length of stay for each admission was 6 days. Discharge letters were posted a median of 4 days after discharge, with 25% not posted at 10 days. No discharge letter was sent in 9.4% (20) of the cases. Only six (2.8%) letters had any recommendations regarding future titration of angiotensin-converting enzyme inhibitors and 6.6% (14) for beta-blockers. Recommendations for future non-pharmacological management, for example, diuretic action plans, regular weight monitoring and exercise plans were not found in the letters in this audit. Conclusion: Hospital discharge is an opportunity to communicate management plans for treatment optimization effectively, and while this opportunity is spurned, implementation gaps in the management of cardiac failure will probably remain.