937 resultados para passenger trains
Resumo:
Mechanical swivel seat adaptations are a key aftermarket disability modification to any small-to medium-sized passenger vehicle. However, the crashworthiness of these devices is currently unregulated and the existing 20g dynamic sled testing approach is prohibitively expensive for prototype assessment purposes. In this paper, an alternative quasi-static test method for swivel seat assessment is presented, and two different approaches (free-body diagram and multibody modelling) validated through published experimental data are developed to determine the appropriate loading conditions to apply in the quasi-static testing.Results show the two theoretical approaches can give similar results for estimating the quasi-static loading conditions, and this depends on the seatbelt configuration. Application of the approach to quasi-static testing of both conventional seats and those with integrated seat belts showed the approach to be successful and easy to apply. It is proposed that this method be used by swivel seat designers to assess new prototypes prior to final validation via the traditional 20g sled test.
Resumo:
This paper presents an event recognition framework, based on Dempster-Shafer theory, that combines evidence of events from low-level computer vision analytics. The proposed method employing evidential network modelling of composite events, is able to represent uncertainty of event output from low level video analysis and infer high level events with semantic meaning along with degrees of belief. The method has been evaluated on videos taken of subjects entering and leaving a seated area. This has relevance to a number of transport scenarios, such as onboard buses and trains, and also in train stations and airports. Recognition results of 78% and 100% for four composite events are encouraging.
Resumo:
Technological learning refers to the learning processes involved in improving the productive capabilities of an enterprise, sector or economy to enable it to produce higher quality goods or services with increasing levels of efficiency. Approaches to the study of technological learning include case studies of particular countries, sectors and firms; measures of export sophistication; and composite indicators of innovation and competitiveness. The present review draws on these approaches to provide an overview of the policies and practices that have been successful in different regions (East-Asia and Latin America) ; contexts (import substitution and liberalization) ; sectors (pulp and paper, IT services, electronics and passenger cars); and firms (Embrear and Lenovo). While it is clear that there is strong complementarity between domestic technological capability and the ability to absorb foreign technology, there is no simple policy recipe which is appropriate for all times, industries or places. Technological learning builds on and is shaped by what is already known. It requires time, space and resources all of which are influenced by the wider domestic and international context. The current international context is challenging but countries and firms have to find ways of moving forward despite the limited strategy space.
Resumo:
As the emphasis on initiatives that can improve environmental efficiency while simultaneously maintaining economic viability has escalated in recent years, attention has turned to more radical concepts of operation. In particular, the cruiser–feeder concept has shown potential for a new generation, environmentally friendly, air-transport system to alleviate the growing pressure on the passenger air-transportation network. However, a full evaluation of realizable benefits is needed to determine how the design and operation of potential feeder-aircraft configurations impact on the feasibility of the overall concept. This paper presents an analysis of a cruiser–feeder concept, in which fuel is transferred between the feeder and the cruiser in an aerial-refueling configuration to extend range while reducing cruiser weight, compared against the effects of escalating existing technology levels while retaining the existing passenger levels. Up to 14% fuel-burn and 12% operating-cost savings can be achieved when compared to a similar technology-level aircraft concept without aerial refueling, representing up to 26% in fuel burn and 25% in total operating cost over the existing operational model at today’s standard fleet technology and performance. However, these potential savings are not uniformly distributed across the network, and the system is highly sensitive to the routes serviced, with reductions in revenue-generation potential observed across the network for aerial-refueling operations due to reductions in passenger revenue.
Resumo:
The transport sector is considered to be one of the most dependent sectors on fossil fuels. Meeting ecological, social and economic demands throughout the sector has got increasingly important in recent times. A passenger vehicle with a more environmentally friendly propulsion system is the hybrid electric vehicle. Combining an internal combustion engine and an electric motor offers the potential to reduce carbon dioxide emissions. The overall objective of this research is to provide an appraisal of the use of a micro gas turbine as the range extender in a plug-in hybrid electric vehicle. In this application, the gas turbine can always operate at its most efficient operating point as its only requirement is to recharge the battery. For this reason, it is highly suitable for this purpose. Gas turbines offer many benefits over traditional internal combustion engines which are traditionally used in this application. They offer a high power-to-weight ratio, multi-fuel capability and relatively low emission levels due to continuous combustion.
Resumo:
Many types of non-invasive brain stimulation alter corticospinal excitability (CSE). Paired associative stimulation (PAS) has attracted particular attention as its effects ostensibly adhere to Hebbian principles of neural plasticity. In prototypical form, a single electrical stimulus is directed to a peripheral nerve in close temporal contiguity with transcranial magnetic stimulation delivered to the contralateral primary motor cortex (M1). Repeated pairing of the two discrete stimulus events (i.e. association) over an extended period either increases or decreases the excitability of corticospinal projections from M1, contingent on the interstimulus interval. We studied a novel form of associative stimulation, consisting of brief trains of peripheral afferent stimulation paired with short bursts of high frequency (≥80 Hz) transcranial alternating current stimulation (tACS) over contralateral M1. Elevations in the excitability of corticospinal projections to the forearm were observed for a range of tACS frequency (80, 140 and 250 Hz), current (1, 2 and 3 mA) and duration (500 and 1000 ms) parameters. The effects were at least as reliable as those brought about by PAS or transcranial direct current stimulation. When paired with tACS, muscle tendon vibration also induced elevations of CSE. No such changes were brought about by the tACS or peripheral afferent stimulation alone. In demonstrating that associative effects are expressed when the timing of the peripheral and cortical events is not precisely circumscribed, these findings suggest that multiple cellular pathways may contribute to a long term potentiation-type response. Their relative contributions will differ depending on the nature of the induction protocol that is used.
Resumo:
This paper presents a new framework for multi-subject event inference in surveillance video, where measurements produced by low-level vision analytics usually are noisy, incomplete or incorrect. Our goal is to infer the composite events undertaken by each subject from noise observations. To achieve this, we consider the temporal characteristics of event relations and propose a method to correctly associate the detected events with individual subjects. The Dempster–Shafer (DS) theory of belief functions is used to infer events of interest from the results of our vision analytics and to measure conflicts occurring during the event association. Our system is evaluated against a number of videos that present passenger behaviours on a public transport platform namely buses at different levels of complexity. The experimental results demonstrate that by reasoning with spatio-temporal correlations, the proposed method achieves a satisfying performance when associating atomic events and recognising composite events involving multiple subjects in dynamic environments.
Resumo:
We theoretically demonstrate the possibility to generate both trains and isolated attosecond pulses with high ellipticity in a practical experimental setup. The scheme uses circularly polarized, counterrotating two-color driving pulses carried at the fundamental and its second harmonic. Using a model Ne atom, we numerically show that highly elliptic attosecond pulses are generated already at the single-atom level. Isolated pulses are produced by using few-cycle drivers with controlled time delay between them.
Resumo:
Roadside safety barriers designs are tested with passenger cars in Europe using standard EN1317 in which the impact angle for normal, high and very high containment level tests is 20°. In comparison to EN1317, the US standard MASH has higher impact angles for cars and pickups (25°) and different vehicle masses. Studies in Europe (RISER) and the US have shown values for the 90th percentile impact angle of 30°–34°. Thus, the limited evidence available suggests that the 20° angle applied in EN 1317 may be too low.
The first goal of this paper is to use the US NCHRP database (Project NCHRP 17–22) to assess the distribution of impact angle and collision speed in recent ROR accidents. Second, based on the findings of the statistical analysis and on analysis of impact angles and speeds in the literature, an LS-DYNA finite element analysis was carried out to evaluate the normal containment level of concrete barriers in non-standard collisions. The FE model was validated against a crash test of a portable concrete barrier carried out at the UK Transport Research Laboratory (TRL).
The accident data analysis for run-off road accidents indicates that a substantial proportion of accidents have an impact angle in excess of 20°. The baseline LS-DYNA model showed good comparison with experimental acceleration severity index (ASI) data and the parametric analysis indicates a very significant influence of impact angle on ASI. Accordingly, a review of European run-off road accidents and the configuration of EN 1317 should be performed.
Resumo:
The development of the latest generation of wide-body carbon-fibre composite passenger aircraft has heralded a new era in the utilisation of these materials. The premise of superior specific strength and stiffness, corrosion and fatigue resistance, is tempered by high development costs, slow production rates and lengthy and expensive certification programmes. Substantial effort is currently being directed towards the development of new modelling and simulation tools, at all levels of the development cycle, to mitigate these shortcomings. One of the primary challenges is to reduce the extent of physical testing, in the certification process, by adopting a ‘certification by simulation’ approach. In essence, this aspirational objective requires the ability to reliably predict the evolution and progression of damage in composites. The aerospace industry has been at the forefront of developing advanced composites modelling tools. As the automotive industry transitions towards the increased use of composites in mass-produced vehicles, similar challenges in the modelling of composites will need to be addressed, particularly in the reliable prediction of crashworthiness. While thermoset composites have dominated the aerospace industry, thermoplastics composites are likely to emerge as the preferred solution for meeting the high-volume production demands of passenger road vehicles. This keynote presentation will outline recent progress and current challenges in the development of finite-element-based predictive modelling tools for capturing impact damage, residual strength and energy absorption capacity of thermoset and thermoplastic composites for crashworthiness assessments.
Resumo:
At a time when the traditional major airlines have struggled to remain viable, the low-cost carriers have become the major success story of the European airline industry. This paper looks behind the headlines to show that although low-cost airlines have achieved much, they too have potential weaknesses and face a number of challenges in the years ahead. The secondary and regional airports that have benefited from low-cost carrier expansion are shown to be vulnerable to future changes in airline economics, government policy and patterns of air service. An analysis of routes from London demonstrates that the low-cost airlines have been more successful in some markets than others. To attractive and historically under-served leisure destinations in Southern Europe they have stimulated dramatic growth and achieved a dominant position. To major hub cities however they typically remain marginal players and to secondary points in Northern Europe their traffic has been largely diverted from existing operators. There is also evidence that the UK market is becoming saturated and new low-cost services are poaching traffic from other low-cost routes. Passenger compensation legislation and possible environmental taxes will hit the low-cost airline industry disproportionately hard. The high elasticities of demand to price in certain markets that these airlines have exploited will operate in reverse. One of the major elements of the low-cost business model involves the use of smaller uncongested airports. These offer faster turn-arounds and lower airport charges. In many cases, local and regional government has been willing to subsidise expansion of air services to assist with economic development or tourism objectives. However, recent court cases against Ryanair now threaten these financial arrangements. The paper also examines the catchment areas for airports with low-cost service. It is shown that as well as stimulating local demand, much traffic is captured from larger markets nearby through the differential in fare levels. This has implications for surface transport, as access to these regional airports often involves long journeys by private car. Consideration is then given to the feasibility of low-cost airlines expanding into the long-haul market or to regional operations with small aircraft. Many of the cost advantages are more muted on intercontinental services.
Resumo:
This paper describes the development of a generic tool for dynamic cost indexing (DCI), which encompasses the ability to manage flight delay costs on a dynamic basis, trading accelerated fuel burn against ‘cost of time’. Many airlines have significant barriers to identifying which costs should be included in ‘cost of time’ calculations and how to quantify them. The need is highlighted to integrate historical passenger delay and policy data with real-time passenger connections data. The absence of industry standards for defining and interfacing necessary tools is recognised. Delay recovery decision windows and ATC cooperation are key constraints. DCI tools could also be used in the pre-departure phase, and may offer environmental decision support functionality: which could be used as a differentiating technology required for access to designated, future ‘green’ airspace. Short-term opportunities for saving fuel and/or reducing emissions are also identified.
Resumo:
Report produced as part of the Green Logistics project (EPSRC and Department for Transport funded). This report is based on a review of UK studies in which data has been collected to obtain an understanding of road-based urban freight transport activities and patterns of operation. Urban freight remains relatively under researched by comparison with passenger transport both in the UK and worldwide. However, in the UK there have been a number of studies that have attempted to investigate road-based freight operations since the 1960s. But no attempt has been made to draw together the results of these various studies and compare them. This is what is presented in this report. The report has studied the results of 30 UK urban freight studies carried out in the last decade in order to attempt to provide insight into urban freight activities in our towns and cities. It presents this current knowledge about urban freight transport activities in the UK from these studies, and compares the similarities and differences between study findings.
Resumo:
Rail freight activity in Britain has increased by almost 50% in the last ten years, with the movement of deep sea ISO containers between ports and inland terminals being a significant growth sector, with considerable further growth potential. High cube ISO containers have become more prevalent, posing a considerable challenge for rail freight operators since much of the rail network has insufficient loading gauge clearance to carry them on standard wagons. This paper investigates the extent to which rail currently handles high cube container movements to/from ports through the analysis of a representative survey of container trains in 2007. The incidence of high cube containers carried by services on gauge-cleared and non-gauge-cleared routes is identified to assess the extent to which a lack of gauge enhancement affects the movement by rail of high cube containers and to identify the impacts of the lack of gauge clearance on operating efficiency. The paper concludes with an evaluation of the likely consequences of the gauge enhancement schemes for which funding is now committed, assessing the extent to which they will reduce or remove the barriers associated with carrying high cube containers between ports and their hinterlands.
Resumo:
The continued growth in the volume of international trade poses considerable economic and sustainability challenges, particularly as transport routes become more congested and concern grows about the role of transport movements in accelerating climate change. Rail freight plays a major role in the inland transport of containers passing through the main British container ports, and potentially could play a more significant role in the future. However, there is little detailed understanding of the nature of this particular rail market, especially in terms its current operating efficiency. This paper examines container train service provision to/from the four main ports, based on analysis of a representative survey of more than 500 container trains between February and August 2007. The extent to which the existing capacity is utilised is presented, and scenarios by which the number of containers carried could be increased without requiring additional train service provision are modelled, to identify the theoretical potential for greater rail volumes. Finally, the paper identifies the challenges involved in achieving higher load factors, emphasising the importance both of wider supply chain considerations and government policy decision-making.