849 resultados para partial least-squares regression


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The task addressed in this thesis is the automatic alignment of an ensemble of misaligned images in an unsupervised manner. This application is especially useful in computer vision applications where annotations of the shape of an object of interest present in a collection of images is required. Performing this task manually is a slow, tedious, expensive and error prone process which hinders the progress of research laboratories and businesses. Most recently, the unsupervised removal of geometric variation present in a collection of images has been referred to as congealing based on the seminal work of Learned-Miller [21]. The only assumption made in congealing is that the parametric nature of the misalignment is known a priori (e.g. translation, similarity, a�ne, etc) and that the object of interest is guaranteed to be present in each image. The capability to congeal an ensemble of misaligned images stemming from the same object class has numerous applications in object recognition, detection and tracking. This thesis concerns itself with the construction of a congealing algorithm titled, least-squares congealing, which is inspired by the well known image to image alignment algorithm developed by Lucas and Kanade [24]. The algorithm is shown to have superior performance characteristics when compared to previously established methods: canonical congealing by Learned-Miller [21] and stochastic congealing by Z�ollei [39].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real‐time kinematic (RTK) GPS techniques have been extensively developed for applications including surveying, structural monitoring, and machine automation. Limitations of the existing RTK techniques that hinder their applications for geodynamics purposes are twofold: (1) the achievable RTK accuracy is on the level of a few centimeters and the uncertainty of vertical component is 1.5–2 times worse than those of horizontal components and (2) the RTK position uncertainty grows in proportional to the base‐torover distances. The key limiting factor behind the problems is the significant effect of residual tropospheric errors on the positioning solutions, especially on the highly correlated height component. This paper develops the geometry‐specified troposphere decorrelation strategy to achieve the subcentimeter kinematic positioning accuracy in all three components. The key is to set up a relative zenith tropospheric delay (RZTD) parameter to absorb the residual tropospheric effects and to solve the established model as an ill‐posed problem using the regularization method. In order to compute a reasonable regularization parameter to obtain an optimal regularized solution, the covariance matrix of positional parameters estimated without the RZTD parameter, which is characterized by observation geometry, is used to replace the quadratic matrix of their “true” values. As a result, the regularization parameter is adaptively computed with variation of observation geometry. The experiment results show that new method can efficiently alleviate the model’s ill condition and stabilize the solution from a single data epoch. Compared to the results from the conventional least squares method, the new method can improve the longrange RTK solution precision from several centimeters to the subcentimeter in all components. More significantly, the precision of the height component is even higher. Several geosciences applications that require subcentimeter real‐time solutions can largely benefit from the proposed approach, such as monitoring of earthquakes and large dams in real‐time, high‐precision GPS leveling and refinement of the vertical datum. In addition, the high‐resolution RZTD solutions can contribute to effective recovery of tropospheric slant path delays in order to establish a 4‐D troposphere tomography.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the research focuses in the integer least squares problem is the decorrelation technique to reduce the number of integer parameter search candidates and improve the efficiency of the integer parameter search method. It remains as a challenging issue for determining carrier phase ambiguities and plays a critical role in the future of GNSS high precise positioning area. Currently, there are three main decorrelation techniques being employed: the integer Gaussian decorrelation, the Lenstra–Lenstra–Lovász (LLL) algorithm and the inverse integer Cholesky decorrelation (IICD) method. Although the performance of these three state-of-the-art methods have been proved and demonstrated, there is still a potential for further improvements. To measure the performance of decorrelation techniques, the condition number is usually used as the criterion. Additionally, the number of grid points in the search space can be directly utilized as a performance measure as it denotes the size of search space. However, a smaller initial volume of the search ellipsoid does not always represent a smaller number of candidates. This research has proposed a modified inverse integer Cholesky decorrelation (MIICD) method which improves the decorrelation performance over the other three techniques. The decorrelation performance of these methods was evaluated based on the condition number of the decorrelation matrix, the number of search candidates and the initial volume of search space. Additionally, the success rate of decorrelated ambiguities was calculated for all different methods to investigate the performance of ambiguity validation. The performance of different decorrelation methods was tested and compared using both simulation and real data. The simulation experiment scenarios employ the isotropic probabilistic model using a predetermined eigenvalue and without any geometry or weighting system constraints. MIICD method outperformed other three methods with conditioning improvements over LAMBDA method by 78.33% and 81.67% without and with eigenvalue constraint respectively. The real data experiment scenarios involve both the single constellation system case and dual constellations system case. Experimental results demonstrate that by comparing with LAMBDA, MIICD method can significantly improve the efficiency of reducing the condition number by 78.65% and 97.78% in the case of single constellation and dual constellations respectively. It also shows improvements in the number of search candidate points by 98.92% and 100% in single constellation case and dual constellations case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The success rate of carrier phase ambiguity resolution (AR) is the probability that the ambiguities are successfully fixed to their correct integer values. In existing works, an exact success rate formula for integer bootstrapping estimator has been used as a sharp lower bound for the integer least squares (ILS) success rate. Rigorous computation of success rate for the more general ILS solutions has been considered difficult, because of complexity of the ILS ambiguity pull-in region and computational load of the integration of the multivariate probability density function. Contributions of this work are twofold. First, the pull-in region mathematically expressed as the vertices of a polyhedron is represented by a multi-dimensional grid, at which the cumulative probability can be integrated with the multivariate normal cumulative density function (mvncdf) available in Matlab. The bivariate case is studied where the pull-region is usually defined as a hexagon and the probability is easily obtained using mvncdf at all the grid points within the convex polygon. Second, the paper compares the computed integer rounding and integer bootstrapping success rates, lower and upper bounds of the ILS success rates to the actual ILS AR success rates obtained from a 24 h GPS data set for a 21 km baseline. The results demonstrate that the upper bound probability of the ILS AR probability given in the existing literatures agrees with the actual ILS success rate well, although the success rate computed with integer bootstrapping method is a quite sharp approximation to the actual ILS success rate. The results also show that variations or uncertainty of the unit–weight variance estimates from epoch to epoch will affect the computed success rates from different methods significantly, thus deserving more attentions in order to obtain useful success probability predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of 10-hydroxycamptothecine (HCPT) with DNA under pseudo-physiological conditions (Tris-HCl buffer of pH 7.4), using ethidium bromide (EB) dye as a probe, was investigated with the use of spectrofluorimetry, UV-vis spectrometry and viscosity measurement. The binding constant and binding number for HCPT with DNA were evaluated as (7.1 ± 0.5) × 104 M-1 and 1.1, respectively, by multivariate curve resolution-alternating least squares (MCR-ALS). Moreover, parallel factor analysis (PARAFAC) was applied to resolve the three-way fluorescence data obtained from the interaction system, and the concentration information for the three components of the system at equilibrium was simultaneously obtained. It was found that there was a cooperative interaction between the HCPT-DNA complex and EB, which produced a ternary complex of HCPT-DNA-EB. © 2011 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In semisupervised learning (SSL), a predictive model is learn from a collection of labeled data and a typically much larger collection of unlabeled data. These paper presented a framework called multi-view point cloud regularization (MVPCR), which unifies and generalizes several semisupervised kernel methods that are based on data-dependent regularization in reproducing kernel Hilbert spaces (RKHSs). Special cases of MVPCR include coregularized least squares (CoRLS), manifold regularization (MR), and graph-based SSL. An accompanying theorem shows how to reduce any MVPCR problem to standard supervised learning with a new multi-view kernel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the multi-view approach to semisupervised learning, we choose one predictor from each of multiple hypothesis classes, and we co-regularize our choices by penalizing disagreement among the predictors on the unlabeled data. We examine the co-regularization method used in the co-regularized least squares (CoRLS) algorithm, in which the views are reproducing kernel Hilbert spaces (RKHS's), and the disagreement penalty is the average squared difference in predictions. The final predictor is the pointwise average of the predictors from each view. We call the set of predictors that can result from this procedure the co-regularized hypothesis class. Our main result is a tight bound on the Rademacher complexity of the co-regularized hypothesis class in terms of the kernel matrices of each RKHS. We find that the co-regularization reduces the Rademacher complexity by an amount that depends on the distance between the two views, as measured by a data dependent metric. We then use standard techniques to bound the gap between training error and test error for the CoRLS algorithm. Experimentally, we find that the amount of reduction in complexity introduced by co regularization correlates with the amount of improvement that co-regularization gives in the CoRLS algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper aims to develop an implicit meshless collocation technique based on the moving least squares approximation for numerical simulation of the anomalous subdiffusion equation(ASDE). The discrete system of equations is obtained by using the MLS meshless shape functions and the meshless collocation formulation. The stability and convergence of this meshless approach related to the time discretization are investigated theoretically and numerically. The numerical examples with regular and irregular nodal distributions are used to the newly developed meshless formulation. It is concluded that the present meshless formulation is very effective for the modeling of ASDEs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structures of the open chain amide carboxylic acid rac-cis-[2-(2-methoxyphenyl)carbamoyl]cyclohexane-1-carboxylic acid, C15H19NO4, (I) and the cyclic imides rac-cis-2-(4-methoxyphenyl)-3a,4,5,6,7,7-hexahydroisoindole-1,3-dione,C15H17NO3, (II), chiral cis-2-(3-carboxyphenyl)-3a,4,5,6,7,7a-hexahydroisoindole-1,3-dione, C15H15NO4,(III) and rac-cis-2-(4-carboxyphenyl)- 3a,4,5,6,7,7a-hexahydroisoindole-1,3-dione monohydrate, C15H15NO4. H2O) (IV), are reported. In the amide acid (I), the phenylcarbamoyl group is essentially planar [maximum deviation from the least-squares plane = 0.060(1)Ang. for the amide O atom], the molecules form discrete centrosymmetric dimers through intermolecular cyclic carboxy-carboxy O-H...O hydrogen-bonding interactions [graph set notation R2/2(8)]. The cyclic imides (II)--(IV) are conformationally similar, with comparable phenyl ring rotations about the imide N-C(aromatic) bond [dihedral angles between the benzene and isoindole rings = 51.55(7)deg. in (II), 59.22(12)deg. in (III) and 51.99(14)deg. in (IV). Unlike (II) in which only weak intermolecular C-H...O(imide) hydrogen bonding is present, the crystal packing of imides (III) and (IV) shows strong intermolecular carboxylic acid O-H...O hydrogen-bonding associations. With (III), these involve imide O-atom acceptors, giving one-dimensional zigzag chains [graph set C(9)], while with the monohydrate (IV), the hydrogen bond involves the partially disordered water molecule which also bridges molecules through both imide and carboxyl O-atom acceptors in a cyclic R4/4(12) association, giving a two-dimensional sheet structure. The structures reported here expand the structural data base for compounds of this series formed from the facile reaction of cis-cyclohexane-1,2-dicarboxylic anhydride with substituted anilines, in which there is a much larger incidence of cyclic imides compared to amide carboxylic acids.