946 resultados para paralytic shellfish poisoning
Resumo:
Maerl is a general term used for loose-lying subtidal beds of nodular coralline red algae. Maerl beds support high associated invertebrate and algal biodiversity, and are subject to European and UK conservation legislation. Previous investigations have shown European maerl to be ecologically fragile due to growth rates of approximately I mm per year. However, these very slow growth rates have hampered attempts to determine the key ecological requirements and sensitivity characteristics of living maerl. In this study, photosynthetic capacity determined by pulse amplitude modulated (PAM) fluorometry was used as a diagnostic of stress caused by various environmental conditions. Maerl species were exposed to a range of temperatures, salinities and light levels and to burial, fragmentation, desiccation and heavy metal treatment. Maerl was not as susceptible as previously assumed to extremes of salinity, temperature and heavy metal pollution, but burial, especially in fine or anoxic sediments, was lethal or caused significant stress. These data indicate that the main anthropogenic hazard for live maerl and the rich communities that depend on them is smothering by fine sediment, such as that produced by trawling or maerl extraction, from sewage discharges or shellfish and fish farm waste, and sedimentation resulting from disruption to tidal flow. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The nature of the surface species formed at the surface of 2 wt.% Pt/CeO2 catalyst during the forward water-gas-shift (WGS, CO + H2O -> CO2 + H-2) and the reverse reaction (RWGS) were essentially identical. More, the surface concentration of formate, carbonate and carbonyl species was similar in each case. The presence of well-resolved IR bands allowed an unequivocal relative quantitative analysis of each species, avoiding the use of the carboxylate stretching region (1600-1200 cm(-1)). However, the quantitative analysis in the case of an isotopic study was complicated due to the overlapping of the various isotope bands, yet this problem could be overcome by integrating the high-wavenumber part of the bands. The reactivity of the surface species formed under RWGS conditions was followed under two different gaseous streams. Firstly, the reactivity of these intermediates were followed under an inert gas (i.e., At), in which case carbonates were essentially stable and less reactive than formates. Secondly, the reactivity of the same surface species was followed when switching to the corresponding C-13-labelled feed (i.e., (CO2)-C-13 + H-2), in which case carbonates were exchanged significantly faster than formates. While carbonates species have been reported as reaction intermediate under reaction conditions, the increased stability or surface poisoning by these carbonates in the absence of reaction mixture was highlighted. Ultimately, this work re-emphasises the need to use steady-state conditions if the true operando reactivity of the adsorbates and structure of the solid are to be determined. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A rapid analytical optical biosensor-based immunoassay was developed and validated for the detection of okadaic acid (OA) and its structurally related toxins from shellfish matrix. The assay utilizes a monoclonal antibody which binds to the OA group of toxins in order of their toxicities, resulting in a pseudofunctional assay. Single-laboratory validation of the assay for quantitative detection of OA determined that it has an action limit of 120 mu g/kg, a limit of detection of 31 mu g/kg, and a working range of 31-174 mu g/kg. The midpoint on the standard matrix calibration curve is 80 mu g/kg, half the current regulatory limit. Inter- and intra-assay studies of negative mussel samples spiked with various OA concentrations produced average coefficient of variation (CV) and standard deviation (SD) values of 7.9 and 10.1, respectively. The assay was also validated to confirm the ability to accurately codetect and quantify dinophysistoxin-1 (DTX-1), DTX-2, and DTX-3 from shellfish matrix. Alkaline hydrolysis was not required for the detection of DTX-3 from matrix. Excellent correlations with the data generated by the biosensor method and liquid chromatography/tandem mass spectrometry (LC/MS/MS) were obtained using a certified reference material (R-2 = 0.99), laboratory reference material, and naturally contaminated mussel samples (R-2 = 0.97). This new procedure could be used as a rapid screening procedure replacing animal-based tests for DSP toxins.
Resumo:
A rapid and sensitive immuno-based screening method was developed to detect domoic acid (DA) present in extracts of shellfish species using a surface plasmon resonance-based optical biosensor. A rabbit polyclonal antibody raised against DA was mixed with standard or sample extracts and allowed to interact with DA immobilized onto a sensor chip surface. The characterization of the antibody strongly suggested high cross-reactivity with DA and important isomers of the toxin. The binding of this antibody to the sensor chip surface was inhibited in the presence of DA in either standard solutions or sample extracts. The DA chip surface proved to be highly stable, achieving approximately 800 analyses per chip without any loss of surface activity. A single analytical cycle (sample injection, chip regeneration, and system wash) took 10 min to complete. Sample analysis (scallops, mussels, cockles, oysters) was achieved by simple extraction with methanol. These extracts were then filtered and diluted before analysis. Detection limits in the ng/g range were achieved by the assay; however, the assay parameters chosen allowed the test to be performed most accurately at the European Union's official action limit for DA of 20 mu g/g. At this concentration, intra- and interassay variations were measured for a range of shellfish species and ranged from 4.5 to 7.4% and 2.3 to 9.7%, respectively.
Resumo:
Currently, there are no fast in vitro broad spectrum screening bioassays for the detection of marine toxins. The aim of this study was to develop such an assay. In gene expression profiling experiments 17 marker genes were provisionally selected that were differentially regulated in human intestinal Caco-2 cells upon exposure to the lipophilic shellfish poisons azaspiracid-1 (AZA1) or dinophysis toxin-1 (DTX1). These 17 genes together with two control genes were the basis for the design of a tailored microarray platform for the detection of these marine toxins and potentially others. Five out of the 17 selected marker genes on this dedicated DNA microarray gave dear signals, whereby the resulting fingerprints could be used to detect these toxins. CEACAM1, DDIT4, and TUBB3 were up-regulated by both AZA1 and DTX1, TRIB3 was up-regulated by AZA1 only, and OSR2 by DTX1 only. Analysis by singleplex qRT-PCR revealed the up- and down-regulation of the selected RGS16 and NPPB marker genes by DTX1, that were not envisioned by the new developed dedicated array. The qRT-PCR targeting the DDIT4, RSG16 and NPPB genes thus already resulted in a specific pattern for AZA1 and DTX1 indicating that for this specific case qRT-PCR might a be more suitable approach than a dedicated array.
Resumo:
Reports of the illegal use of clenbuterol as a growth promotant prompted the development of a competitive enzyme immunoassay for this drug. This procedure was utilized to study the elimination of clenbuterol from tissues in sheep medicated with both therapeutic and growth-promoting doses of the drug. The results indicated that prior to removal of medication clenbuterol was widely distributed throughout the animal tissues. However as the withdrawal periods increased fluid targets such as urine and bile became less effective at detecting clenbuterol usage. At both therapeutic and growth-enhancing concentrations of clenbuterol liver samples remained positive up to the maximum withdrawal time given in this experiment (15 days). Concentrations of clenbuterol likely to cause food poisoning (> 100 ng/g) were only detected in liver samples taken prior to the removal of medication. The highest recorded concentration of clenbuterol in muscle was 22.5 ng/g.
Resumo:
Tetrahexahedral Pt nanocrystals (THH Pt NCs) bound by well-defined high index crystal planes offer exceptional electrocatalytic activity, owing to a high density of low-coordination surface Pt sites. We report, herein, on methanol electrooxidation at THH Pt NC electrodes studied by a combination of electrochemical techniques and in situ FTIR spectroscopy. Pure THH Pt NC surfaces readily facilitate the dissociative chemisorption of methanol leading to poisoning by strongly adsorbed CO. Decoration of the stepped surfaces by Ru adatoms increases the tolerance to poisoning and thereby reduces the onset potential for methanol oxidation by over 100 mV. The Ru modified THH Pt NCs exhibit greatly superior catalytic currents and CO2 yields in the low potential range, when compared with a commercial PtRu alloy nanoparticle catalyst. These results are of fundamental importance in terms of model nanoparticle electrocatalytic systems of stepped surfaces and also have practical significance in the development of surface tailored, direct methanol fuel cell catalysts.
Resumo:
Tetrahexahedral Pt nanocrystals (THH Pt NCs), bound by high index facets, belong to an emerging class of nanomaterials that promise to bridge the gap between model and practical electrocatalysts. The atomically stepped surfaces of THH Pt NCs are extremely active for the electrooxidation of small organic molecules but they also readily accommodate the dissociative chemisorption of such species, resulting in poisoning by strongly adsorbed CO. Formic acid oxidation is an ideal reaction for studying the balance between these competing catalyst characteristics, since it can proceed by either a direct or a CO mediated pathway. Herein, we describe electrochemical and in situ FTIR spectroscopic investigations of formic acid electrooxidation at both clean and Au adatom modified THH Pt NC surfaces. The Au decoration leads to higher catalytic currents and enhanced CO2 production in the low potential range. As the CO oxidation behaviour of the catalyst is not changed by the presence of the Au, it is likely that the role of the Au is to promote the direct pathway. Beyond their fundamental importance, these results are significant in the development of stable, poison resistant anodic electrocatalysts for direct formic acid fuel cells.
Resumo:
Veterinary use of the nonsteroidal anti-inflammatory (NSAID) drug diclofenac in South Asia has resulted in the collapse of populations of three vulture species of the genus Gyps to the most severe category of global extinction risk. Vultures are exposed to diclofenac when scavenging on livestock treated with the drug shortly before death. Diclofenac causes kidney damage, increased serum uric acid concentrations, visceral gout, and death. Concern about this issue led the Indian Government to announce its intention to ban the veterinary use of diclofenac by September 2005. Implementation of a ban is still in progress late in 2005, and to facilitate this we sought potential alternative NSAIDs by obtaining information from captive bird collections worldwide. We found that the NSAID meloxicam had been administered to 35 captive Gyps vultures with no apparent ill effects. We then undertook a phased programme of safety testing of meloxicam on the African white-backed vulture Gyps africanus, which we had previously established to be as susceptible to diclofenac poisoning as the endangered Asian Gyps vultures. We estimated the likely maximum level of exposure (MLE) of wild vultures and dosed birds by gavage (oral administration) with increasing quantities of the drug until the likely MLE was exceeded in a sample of 40 G. africanus. Subsequently, six G. africanus were fed tissues from cattle which had been treated with a higher than standard veterinary course of meloxicam prior to death. In the final phase, ten Asian vultures of two of the endangered species (Gyps bengalensis, Gyps indicus) were dosed with meloxicam by gavage; five of them at more than the likely MLE dosage. All meloxicam-treated birds survived all treatments, and none suffered any obvious clinical effects. Serum uric acid concentrations remained within the normal limits throughout, and were significantly lower than those from birds treated with diclofenac in other studies. We conclude that meloxicam is of low toxicity to Gyps vultures and that its use in place of diclofenac would reduce vulture mortality substantially in the Indian subcontinent. Meloxicam is already available for veterinary use in India.
Resumo:
El Hondo is a key area for marbled teal and white-headed duck. We present Pb, Cu, Zn, Se, and As data for bone and liver in birds found dead between 1996 and 2001. Several metals were higher in adult white-headed ducks than in marbled teal. They were higher in female than in male white-headed ducks, and did not differ with sex in marbled teal, but did by age. Lead in liver of adults was influenced by Pb shot ingestion, which was detected in 21% of marbled teal and in 71% of white-headed duck. No marbled teal had liver levels indicative of Pb poisoning, while 86% of white-headed ducks did. Selenium, Zn, and Cu were elevated in 13%, 7%, and 39% of birds, respectively. Whilst Pb shot poses the greatest threat to these species, further work should assess exposure via plants, invertebrates, water, and sediments for other metals, and investigate possible sub-lethal effects.
Resumo:
The nonsteroidal anti-inflammatory drug diclofenac is extremely toxic to Old World Gyps vultures (median lethal dose -0.1-0.2 mg/kg), evoking visceral gout, renal necrosis, and mortality within a few days of exposure. Unintentional secondary poisoning of vultures that fed upon carcasses of diclofenac-treated livestock decimated populations in the Indian subcontinent. Because of the widespread use of diclofenac and other cyclooxygenase-2 inhibiting drugs, a toxicological study was undertaken in turkey vultures (Cathartes aura) as an initial step in examining sensitivity of New World scavenging birds. Two trials were conducted entailing oral gavage of diclofenac at doses ranging from 0.08 to 25 mg/kg body weight. Birds were observed for 7 d, blood samples were collected for plasma chemistry (predose and 12, 24, and 48 h and 7 d postdose), and select individuals were necropsied. Diclofenac failed to evoke overt signs of toxicity, visceral gout, renal necrosis, or elevate plasma uric acid at concentrations greater than 100 times the estimated median lethal dose reported for Gyps vultures. For turkey vultures receiving 8 or 25 mg/kg, the plasma half-life of diclofenac was estimated to be 6 h, and it was apparently cleared after several days as no residues were detectable in liver or kidney at necropsy. Differential sensitivity among avian species is a hallmark of cyclooxygenase-2 inhibitors, and despite the tolerance of turkey vultures to diclofenac, additional studies in related scavenging species seem warranted.
Resumo:
Since 1989, a red kite Milvus milvus reintroduction programme has been underway in the United Kingdom, with 4-6 week old nestlings brought into captivity and held for 6-8 weeks before reintroduction. As scavengers, red kites may consume unretrieved game, and ingest shot or lead (Pb) fragments in their prey's flesh. We evaluated exposure to Pb in captive and wild red kites by taking blood samples from 125 captive young red kites prior to release, through analysing 264 pellets (regurgitated by wild birds) collected from under a roost site, and analysing Pb concentrations in livers and/or bones of 87 red kites found dead between 1995 and 2003. Lead isotope analyses of livers were also conducted in an effort to identify Pb exposure routes. Forty-six (36.8%) kites sampled prior to release had elevated blood Pb concentrations (201-3340 microg l(-1)). The source of this Pb was probably small fragments of lead ammunition in the carcasses of birds or mammals either fed to the nestlings by their parents or, more likely, subsequently whilst in captivity. Once released, kites were also exposed to lead shot in their food, and a minimum of 1.5-2.3% of regurgitated pellets contained Pb gunshot. Seven of 44 red kites found dead or that were captured sick and died within a few days had elevated (>6 mg kg(-1) dry weight [d.w.]) liver Pb concentrations, and six of these (14%) had concentrations of >15 mg kg(-1) d.w., compatible with fatal Pb poisoning. Post-mortem analyses indicated that two of these birds had died of other causes (poisoning by rodenticide and a banned agricultural pesticide); the remaining four (9%) probably died of Pb poisoning. Bone samples from 86 red kites showed a skewed distribution of Pb concentration, and 18 samples (21%) had Pb concentrations >20 mg kg(-1) d.w., indicating elevated exposure to Pb at some stage in the birds' life. Lead isotopic signatures (Pb (208/206); Pb (206/207)) in liver samples of the majority of kites were compatible with those found in lead shot extracted from regurgitated pellets. Lead isotope ratios found in the livers of kites with very low Pb concentrations were distinct from UK petrol Pb isotopic signatures, indicating that birds were exposed to little residual petrol Pb. We conclude that the primary source of Pb to which red kites are exposed is lead ammunition (shotgun pellets or rifle bullets), or fragments thereof, in their food sources; in some cases exposure appears sufficient to be fatal. We make recommendations to reduce Pb poisoning in both captive and wild red kites and other scavenging species.
Resumo:
Greylag geese (Anser anser) in the Guadalquivir Marshes (southwestern Spain) can be exposed to sources of inorganic pollution such as heavy metals and arsenic from mining activities or Pb shot used for hunting. We have sampled 270 fecal excreta in different areas of the marshes in 2001 to 2002 to evaluate the exposure to Pb, Zn, Cu, Mn, and As and to determine its relationship with soil ingestion and with the excretion of porphyrins and biliverdin as biomarkers. These effects and the histopathology of liver, kidney, and pancreas were also studied in 50 geese shot in 2002 to 2004. None of the geese had ingested Pb shot in the gizzard. This contrasts with earlier samplings before the ban of Pb shot for waterfowl hunting in 2001 and the removal of Pb shot in points of the Doñana National Park (Spain) in 1999 to 2000. The highest exposure through direct soil ingestion to Pb and other studied elements was observed in samples from Entremuros, the area of the Doñana Natural Park affected by the Aznalcóllar mine spill in 1998. Birds from Entremuros also more frequently showed mononuclear infiltrates in liver and kidney than birds from the unaffected areas, although other more specific lesions of Pb or Zn poisoning were not observed. The excretion of coproporphyrins, especially of the isomer I, was positively related to the fecal As concentration, and the ratio of coproporphyrin III/I was positively related to fecal Pb concentration. Biliary protoporphyrin IX concentration was also slightly related to hepatic Pb concentration. This study reflects biological effects on terrestrial animals by the mining pollution in Doñana that can be monitored with the simple noninvasive sampling of feces.
Resumo:
The bones (humerus and/or femur) of 229 birds of prey from 11 species were analyzed for Pb and As to evaluate their exposure to Pb shot. The species with the highest mean Pb levels were red kite (Milvus milvus) and Eurasian griffon (Gyps fulvus), and the species with the lowest levels were Eurasian buzzard (Buteo buteo) and booted eagle (Hieraaetus pennatus). Red kite also had the highest mean As level, an element present in small amounts in Pb shot. Elevated bone Pb concentrations (>10 microg/g dry weight) were found in 10 birds from six species. Clinical signs compatible with lethal Pb poisoning and/or excessive bone Pb concentrations (>20 microg/g) were observed in one Eurasian eagle-owl (Bubo bubo), one red kite, and one Eurasian griffon. Pb poisoning has been diagnosed in eight upland raptor species in Spain to date.
Resumo:
Surface characterization of amorphous silica-alumina (ASA) by COads IR, pyridine(ads) IR, alkylamine temperature-programmed desorption (TPD), Cs+ and Cu(EDA)(2)(2+) exchange, H-1 NMR, and m-xylene isomerization points to the presence of a broad range of Bronsted and Lewis acid sites. Careful interpretation of IR spectra of adsorbed CO or pyridine confirms the presence of a few very strong Bronsted acid sites (BAS), typically at concentrations lower than 10 mu mol/g. The general procedure for alkylamine TPD, which probes both Bronsted and Lewis acidity, is modified to increase the selectivity to strong Bronsted acid sites. Poisoning of the m-xylene isomerization reaction by a base is presented as a novel method to quantify strong BAS. The surface also contains a weaker form of BAS, in concentrations between 50 and 150 mu mol/g, which can be quantified by COads IR Cu(EDA)(2)(2+) exchange also probes these sites. The structure of these sites remains unclear, but they might arise from the interaction of silanol groups with strong Lewis acid Al3+ sites. The surface also contains nonacidic aluminol and silanol sites (200-400 mu mol/g) and two forms of Lewis acid sites: (i) a weaker form associated with segregated alumina domains containing five-coordinated Al, which make up the interface between these domains and the ASA phase and (ii) a stronger form, which are undercoordinated Al sites grafted onto the silica surface. The acid catalytic activity in bifunctional n-heptane hydroconversion correlates with the concentration of strong BAS. The influence of the support electronegativity on the neopentane hydrogenolysis activity of supported Pt catalysts is considerably larger than that of the support Bronsted acidity. It is argued that strong Lewis acid sites, which are present in ASA but not in gamma-alumina, are essential to transmit the Sanderson electronegativity of the oxide support to the active Pt phase.