960 resultados para oxygen evolution activity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Earth's climate underwent a fundamental change between 1250 and 700 thousand years ago, the Mid-Pleistocene Transition (MPT), when the dominant periodicity of climate cycles changed from 41,000 to 100,000 years in the absence of significant change in orbital forcing. Over this time, an increase occurred in the amplitude of change of deep ocean foraminiferal oxygen isotopic ratios, traditionally interpreted as defining the main rhythm of ice ages although containing large effects of changes in deep-ocean temperature. We have separated the effects of decreasing temperature and increasing global ice volume on oxygen isotope ratios. Our results suggest that the MPT was initiated by an abrupt increase in Antarctic ice volume at 900 ka. We see no evidence of a pattern of gradual cooling but near-freezing temperatures occur at every glacial maximum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In situ secondary ionization mass spectrometry (SIMS) analyses of oxygen isotopes in authigenic calcite veins were obtained from an active thrust fault system drilled at Ocean Drilling Program (ODP) Site 892 (44°40.4'N, 125°07.1'W) along the Cascadia subduction margin. The average d18OPDB value of all samples is -9.9 per mil and the values are the lowest of any measured in active accretionary prisms. Ranges in individual veins can be as much as 19.6 per mil. There is an isotopic stratigraphy related to the structural stratigraphy. Mean isotope values in the hanging wall, thrust, and footwall are -14.4 per mil, -9.5 per mil, and -5.2 per mil, respectively. Several veins and crosscutting vein sequences show a general trend from lower to higher d18O values over time. Isotopic and textural data indicate several veins formed by a crack-seal mechanism and growth into open fractures. The best explanation for the strong 18O depletions is periodic rapid flow from 2-3 km deeper in the prism. Relatively narrow isotopic ranges for most veins suggest that fluids were derived from a similar source depth for each episode of fluid pulse and calcite crystallization. Structural and mass balance considerations are consistent with a record preserved in the veins of ten to hundreds of thousands of years. The fluid pulses may relate to periodic large earthquake events such as those recognized in the paleoseismicity records from the Cascadia margin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first detailed stratigraphic record from a deep-water carbonate mound in the Northeast Atlantic based on absolute datings (U/Th and AMS 14C) and stable oxygen isotope records reveals that its top sediment sequences are condensed by numerous hiatuses. According to stable isotope data, mainly sediments with an intermediate signal are preserved on the mound, while almost all fully glacial and interglacial sediments have either not been deposited or have been eroded later. The resulting hiatuses reduce the Late Pleistocene sediment accumulation at Propeller Mound to amounts smaller than the background sedimentation. The hiatuses most likely result due to the sweeping of the mound in turn with the re-establishment of vigour interglacial circulation patterns after sluggish current regimes during glacials. Thus, within the discussion if internal, fluid-driven or external environmentally driven processes control the evolution of such carbonate mounds, our findings for Propeller Mound clearly point to environmental forcing as the dominant mechanism shaping deep-water carbonate mounds in the NE Atlantic during the Late Pleistocene and Holocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Authigenic phosphatic laminites enclosed in phosphorite crusts from the shelf off Peru (10°01' S and 10°24' S) consist of carbonate fluorapatite layers, which contain abundant sulfide minerals including pyrite (FeS2) and sphalerite (ZnS). Low d34Spyrite values (average -28.8 per mill) agree with bacterial sulfate reduction and subsequent pyrite formation. Stable sulfur isotopic compositions of sulfate bound in carbonate fluorapatite are lower than that of sulfate from ambient sea water, suggesting bacterial reoxidation of sulfide by sulfide-oxidizing bacteria. The release of phosphorus and subsequent formation of the autochthonous phosphatic laminites are apparently caused by the activity of sulfate-reducing bacteria and associated sulfide-oxidizing bacteria. Following an extraction-phosphorite dissolution-extraction procedure, molecular fossils of sulfate-reducing bacteria (mono-O-alkyl glycerol ethers, di-O-alkyl glycerol ethers, as well as the short-chain branched fatty acids i/ai-C15:0, i/ai-C17:0 and 10MeC16:0) are found to be among the most abundant compounds. The fact that these molecular fossils of sulfate-reducing bacteria are distinctly more abundant after dissolution of the phosphatic laminite reveals that the lipids are tightly bound to the mineral lattice of carbonate fluorapatite. Moreover, compared with the autochthonous laminite, molecular fossils of sulfate-reducing bacteria are: (1) significantly less abundant and (2) not as tightly bound to the mineral lattice in the other, allochthonous facies of the Peruvian crusts consisting of phosphatic coated grains. These observations confirm the importance of sulfate-reducing bacteria in the formation of the phosphatic laminite. Model calculations highlight that organic matter degradation by sulfate-reducing bacteria has the potential to liberate sufficient phosphorus for phosphogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) cores permit us to extend the study of millennial-scale climate variability beyond the time period that is generally accessible for piston cores (i.e., the last glacial cycle). ODP Leg 177 provided for the first time continuous high sedimentation rate cores along a north-south transect from 41°to 53°S across the main subdivisions of the Southern Ocean (Shipboard Scientific Party, 1999, doi:10.2973/odp.proc.ir.177.101.1999). The main purpose of this drilling was to investigate the Pleistocene and Holocene paleoceanographic history of this region, documented in the sedimentary records. ODP Sites 1094, 1093, 1091, and 1089 accumulated throughout the Pleistocene at rates >10 cm/k.y. and are the most detailed Pleistocene climatic records ever retrieved from the Southern Ocean. These sections provide a unique opportunity to fill an important gap in the knowledge of the paleoclimatic evolution of the high southern latitude regions. The composite sections at each site were generated shipboard using magnetic susceptibility, gamma ray attenuation (GRA) density, and reflectance data to correlate the drill holes and splice together an optimal (complete and undisturbed) record of the sedimentary sequence at each site. A preliminary magnetic polarity stratigraphy was generated on the 'archive' halves of the core sections from each hole, using the shipboard pass-through magnetometer after demagnetization at a single peak alternating field (Shipboard Scientific Party, 1999). During July 1998, we sampled core sections spanning the mid-Pleistocene interval (0.65-1.2 Ma) from Sites 1094, 1093, and 1091 at the ODP Bremen Core Repository and have since then analyzed the stable isotopic ratios of foraminifers in samples from Sites 1094 and 1091. Our goals for these studies are to establish detailed chronology for the mid-Pleistocene Southern Ocean records from Leg 177 using high-resolution stable isotope analyses, and furthermore, to trace the evolution of millennial-scale variability in proxy records from older glacial and interglacial periods characterized by higher-frequency variation. Here, we report on our stratigraphic results to date and describe the laboratory methods employed for sample preparation and stable isotope analysis. Furthermore, we provide tab-delimited text files of the age models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Persian Gulf situated in the arid climate region of the northern hemisphere shows special conditions in its hydrochemistry. The high evaporation, the lack of large rivers, and the exclusion of deep water from the Indian Ocean governs the nutrient cycle. At 28 stations in the deeper part of the Persian Gulf (Iran side), in the Strait of Hormuz, and in the Gulf of Oman determinations of dissolved oxygen, dissolved inorganic phosphate, silicate, and pH were carried out. On 4 selected transverse profiles for phosphate, and dissolved oxygen and on 1 length profile for phosphate, silicate, oxygen, and pH the distribution of these components is shown and the in- and outflow is characterized. It is also pointed out that the nutrients on their way into the Persian Gulf are diminished and that temporary replenishment supply from a layer of about 100 m depth in the Indian Ocean follows. On one horizontal map the phosphate distribution in the surface and 30 m layer gives reference to biological activity. One diagram where nitrogen components are plotted against phosphate shows that nitrate is a limiting factor for productivity. O2/PO4-P and PO4-P/S? diagrams enable the different waterbodies and mixed layers to be characterized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DSDP Leg 82 drilled nine sites to the southwest of the Azores Islands on the west flank of the Mid-Atlantic Ridge (MAR) in an attempt to determine the temporal and spatial evolution of the Azores "hot-spot" activity. The chemistry of the basalts recovered during Leg 82 is extremely varied: in Holes 558 and 561, both enriched (E-type: CeN/YbN = 1.5 to 2.7; Zr/Nb = 4.5 to 9.6) and depleted (or normal-N-type: CeN/YbN = 0.6 to 0.8; Zr/Nb > 20) mid-ocean ridge basalts (MORB) occur as intercalated lava flows. To the north of the Hayes Fracture Zone, there is little apparent systematic relationship between basalt chemistry and geographic position. However, to the south of the Hayes Fracture Zone, the chemical character of the basalts (N-type MORB) is more uniform. The coexistence of both E-type and N-type MORB in one hole may be explicable in terms of either complex melting/ fractionation processes during basalt genesis or chemically heterogeneous mantle sources. Significant variation in the ratios of strongly incompatible trace elements (e.g., La/Ta; Th/Ta) in the basalts of Holes 558 and 561 are not easily explicable by processes such as dynamic partial melting or open system crystal fractionation. Rather, the trace element data require that the basalts are ultimately derived from at least two chemically distinct mantle sources. The results from Leg 82 are equivocal in terms of the evolution of the Azores "hot spot," but would appear not to be compatible with a simple model of E-type MORB magmatism associated with upwelling mantle "blobs." Models that invoke a locally chemically heterogeneous mantle are best able to account for the small-scale variation in basalt chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between planktonic and benthic foraminiferal stable-isotope values and oceanographic conditions and factors controlling isotopic variations are discussed on the basis of oxygen and carbon isotopic analyses of 192 modern surface and Last Glacial Maximum (LGM) samples from the South China Sea (SCS). The harmonic variation of benthic delta18O in surface sediments with water depth and temperature implies that the temperature is the main factor influencing benthic delta18O variations. Planktonic delta18O fluctuates with sea surface temperature (SST) and salinity (SSS). The N-S temperature gradient results in planktonic delta18O decreasing from the northeast to the south. Cool, saline waters driven by the winter monsoon are interpreted to have been responsible for the high delta18O values in the northeast SCS. The East Asian monsoons not only bring nutrients into the South China Sea and maintain high nutrient concentration levels at the southwestern and northeastern ends, which cause depleted delta13C both in planktonic (surface) and benthic (bottom) samples but also reduce planktonic/benthic delta18O differences. The distribution of delta18O and delta13C in the surface and LGM samples are strikingly similar, indicating that the impact of SST and SSS has been maintained, and nutrient inputs, mainly from the northeastern and southwestern ends, have been controlled by monsoons since the LGM. Comparisons of the modern and LGM delta18O indicate a difference of about 3.6 °C in bottom-water temperature and a large surface-to-bottom temperature gradient during the LGM as compared to today.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seismic reflection studies in the maar lake Laguna Potrok Aike (51°58? S, 70°23? W) revealed an erosional unconformity associated with a sub-aquatic lake-level terrace at a water depth of 30m. Radiocarbon-dated, multi-proxy sediment studies of a piston core from this location indicate that the sediment below this discontinuity has an age of 45kyr BP (Oxygen Isotope Stage 3), and was deposited during an interval of high lake level. In comparison to the Holocene section, geochemical indicators of this older part of the record either point towards a different sediment source or to a different transport mechanism for Oxygen Isotope Stage 3 sediments. Holocene sedimentation started again before 6790cal. yr BP, providing a sediment record of hydrological variability until the present. Geochemical and isotopic data indicate a fluctuating lake level until 5310cal. yr BP. During the late Holocene the lake level shows a receding tendency. Nevertheless, the lake level did not drop below the 30m terrace to create another unconformity. The geochemical characterization of volcanic ashes reveals evidence for previously unknown explosive activity of the Reclús and Mt. Burney volcanoes during Oxygen Isotope Stage 3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oxygen and carbon isotopic composition has been measured for numerous Paleogene planktonic foraminifer species from Maud Rise, Weddell Sea (ODP Sites 689 and 690), the first such results from the Antarctic. The results provide information about large-scale changes in the evolution of temperatures, seasonally, and structure of the upper water column prior to the development of a significant Antarctic cryosphere. The early Paleocene was marked by cooler surface-water conditions compared to the Cretaceous and possibly a less well developed thermocline. The late Paleocene and early Eocene saw the expansion of the thermocline as Antarctic surface waters became warm-temperate to subtropical. The late Paleocene to early Eocene thermal maximum was punctuated by two brief excursions during which time the entire Antarctic water column warmed and the meridional temperature gradient was reduced. The first of these excursions occurred at the Paleocene/Eocene boundary, in association with a major extinction in deep sea benthic foraminifers. The second excursion occurred within the early Eocene at ~54.0 Ma. These excursions are of global importance and represent the warmest intervals of the entire Cenozoic. The excursions were associated with fundamental changes in deep-water circulation and global heat transport. The thermal maximum of the early Eocene ended with the initiation of a long-term cooling trend at 52.0 Ma. This cooling trend was associated with reduced seasonality, and diminished structure and/or duration of the seasonal thermocline. The cooling trend was punctuated by three major cooling steps at 43.0, 40.0, and -36.0 Ma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since ten years ago, it is intensely thought of human work and employment in developed countries as a consequence of the deep changes on the productive system. In this chapter we analyze at first place the concept of work and its evolution, based on recent researches. In second place we review the notions of activity, work and employment and also the definition and measurement of unemployment, which is not a very old notion. The third part is about the work rol in human life and finally we study the different alternatives on activity and specific work contracts, proposals that nowadays replace the notion of "full employment" in France.