972 resultados para organic matter input
Resumo:
This thesis deals with the response of biodegradation of selected anthropogenic organic contaminants and natural autochthonous organic matter to low temperature in boreal surface soils. Furthermore, the thesis describes activity, diversity and population size of autotrophic ammonia-oxidizing bacteria (AOB) in a boreal soil used for landfarming of oil-refinery wastes, and presents a new approach, in which the particular AOB were enriched and cultivated in situ from the landfarming soil onto cation exchange membranes. This thesis demonstrates that rhizosphere fraction of natural forest humus soil and agricultural clay loam soil from Helsinki Metropolitan area were capable of degrading of low to moderate concentrations (0.2 50 µg cm-3) of PCP, phenanthrene and 2,4,5-TCP at temperatures realistic to boreal climate (-2.5 to +15 °C). At the low temperatures, the biodegradation of PCP, phenanthrene and 2,4,5-TCP was more effective (Q10-values from 1.6 to 7.6) in the rhizosphere fraction of the forest soil than in the agricultural soil. Q10-values of endogenous soil respiration (carbon dioxide evolution) and selected hydrolytic enzyme activities (acetate-esterase, butyrate-esterase and β-glucosidase) in acid coniferous forest soil were 1.6 to 2.8 at temperatures from -3 to +30 °C. The results indicated that the temperature dependence of decomposition of natural autochthonous soil organic matter in the studied coniferous forest was only moderate. The numbers of AOB in the landfarming (sandy clay loam) soil were determined with quantitative polymerase chain reaction (real-time PCR) and with Most Probable Number (MPN) methods, and potential ammonium oxidation activity was measured with the chlorate inhibition technique. The results indicated presence of large and active AOB populations in the heavily oil-contaminated and urea-fertilised landfarming soil. Assessment of the populations of AOB with denaturing gradient gel electrophoresis (DGGE) profiling and sequence analysis of PCR-amplified 16S rRNA genes showed that Nitrosospira-like AOB in clusters 2 and 3 were predominant in the oily landfarming soil. This observation was supported by fluorescence in situ hybridization (FISH) analysis of the AOB grown on the soil-incubated cation-exchange membranes. The results of this thesis expand the suggested importance of Nitrosospira-like AOB in terrestrial environments to include chronically oil-contaminated soils.
Resumo:
Very little research has been carried out on detrital energetics and pathways in lotic ecosystems. Most investigations have concentrated on the degradation of allochthonous plant litter by fungi, with a glance at heterotrophic bacteria associated with decaying litter. In this short review, the author describes what is known of the detrition of plant litter in lotic waters, which results from the degradative activities of colonising saprophytic fungi and bacteria, and goes on to relate this process to those invertebrates that consume coarse and/or fine particulate detritus, or dissolved organic matter that aggregates into colloidal exopolymer particles. It is clear that many of the key processes involved in the relationships between the physical, chemical, biotic and biochemical elements present in running waters are very complex and poorly understood. Those few aspects for which there are reliable models with predictive power have resulted from data collections made over periods of 20 years or more. Comprehensive research of single catchments would provide a fine opportunity to collect data over a long period.
Resumo:
Observations are reported on the content of organic matter in the Moscow region in 1941. Some data is given on alkalinity, oxygen content and colourisation of the rivers.
Resumo:
Dissolved organic matter, especially turf and peat, is repsonsible for the colouration of water. The reported study tried to determine the nature of the colouring agent or organic matter by the establishment of a relationship between the intensity of colouration and the total organic matter content. 44 waters from different sources were examined.
Resumo:
Sediments are indicators of the quality of water overlying them and hence, useful in the assessment of environmental pollution. Temporal and spatial variations in sediment characteristics and organic carbon content from 9 stations in the lower reaches of Periyar River an area in Cochin Backwater, India which is polluted from different sources were studied for one year during 1981. Variations in colour and texture of sediments were brought about by changes in the grain size and state of oxidation of organic matter. The colour of the sediment varied from greyish black at stations 1 and 2, brownish at station 3, black at stations 4 to 8 and reddish at station 9. Organic carbon and sediment texture showed a direct relationship at all stations except at station 9 where organic carbon content showed an irregular pattern. Overall range of organic carbon content was between 1.19 and 29.6 mg.g super(-1). The mean organic carbon of the stations ranged between 6.8 mg.g super(-1) (station 5) and 20.8 mg.g super(-1) (station 9). On the whole temporal variations were considerable with high values at station 9 and low values at station 5. Fluctuations were more at stations 6, 7 and 8.
Resumo:
Penaeus monodon postlarvae were subjected to increasing feed concentrations and their growth and survival rates were recorded. Measurements were made of dissolved organic matter, and ammonia and nitrite-nitrogen concentrations. Survival was highest at the lowest feeding level and decreased as feed concentration increased. It is concluded that although organic matter enriches the food supply for P. monodon postlarvae, at higher concentration levels it can pollute the culture water, which in turn leads to mass mortality of the postlarvae. Secondly, the survival rate of P. monodon postlarvae is directly related to dissolved organic matter concentration, oxygen tension, and ammonia-nitrogen concentrations in the culture water. Even at sublethal levels these adverse environmental conditions decrease the survival rate.
Resumo:
The paper reviews the distribution of organic compounds in freshwater lakes and rivers. The study of dissolved organic matter in natural lakes and rivers is of importance for a variety of reasons. The organic matter may serve in part or whole as an energy source for organisms living in the aquatic environment, or it may supply them with materials essential for their nutrition.
Resumo:
There was a positive correlation between the concentration of organic carbon and potential respiration as measured by carbon dioxide evolution (R-2 = 0.923) and oxygen consumption (R-2 = 0.986) in soil samples collected from the bottoms of drained ponds. This finding supports the frequent use of organic carbon analysis as an indicator of sediment respiration rate under optimal conditions in commercial aquaculture facilities. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
土壤微生物量、可溶性有机碳与氮虽然只占土壤有机碳、氮总量的较小部分,但可以在土壤全碳、氮变化之前反映土壤微小的变化,又直接参与土壤生物化学转化过程,因而在植被恢复过程中,较其它土壤理化性质等能够更好地指示土壤恢复情况。在青藏高原东缘存在大面积的次生人工林替代灌丛或采伐迹地,而关于这些人工林替代后的生态效果和生态过程的评估却十分缺乏,本研究通过评估岷江上游植被恢复重建过程中典型人工替代次生植被凋落物层与土壤碳、氮等养分大小,动态监测土壤微生物生物量、水溶性碳、氮等指标,结合温度与凋落物输入等影响土壤活性有机碳、氮因子的控制试验,系统分析不同人工替代次生植被土壤碳、氮等养分的差异原因,试图寻找低效人工林优化调控与持续管理技术,为区域生态公益林持续管理提供理论和技术依据。主要结论如下: 1. 通过对不同人工替代次生植被凋落物层和土壤碳、氮分析发现,油松和华山松人工林替代次生灌丛后土壤碳、氮含量较灌丛和阔叶人工林低,主要原因可能为凋落物质量(C/N)较差,而引起碳、氮等元素难以归还土壤。进而通过对不同人工替代次生植被凋落物层和土壤微生物生物量、水溶性有机碳、氮等指标的季节性动态模式的分析,发现各次生植被土壤微生物生物量C、N,P以及土壤水溶性碳、氮含量均呈明显季节性动态,呈现秋季明显大于其它季节,冬季最低,在表层土壤最为明显。 2. 油松、华山松人工林凋落物层和土壤水溶性有机碳(WDOC)、土壤水溶性有机氮(WDON)明显低于灌丛和连香树,土壤微生物生物量C、N也以油松和华山松人工林最低,而落叶类植被,如灌丛、连香树和落叶松之间没有明显差异,说明可利用底物的数量和质量差异是影响各次生植被凋落物分解和土壤微生物活性的主要原因。MBC/OC和MBN/ON能较好地指示土壤微生物活性的变化,MBC/OC凋落层总体以灌丛和连香树人工林最高,油松和华山松人工林最低;而土壤中MBC/OC连香树人工最高,华山松人工林最低。说明以油松和华山松为主的人工造林替代乡土阔叶灌丛造成土壤C、N等养分严重匮乏,微生物活性低下是影响其养分周转的主要原因。 3. 从各次生植被凋落物产生看,凋落物年归还量最大的为华山松人工林(5.1×103 kg ha-1),其次为落叶松人工林(4.8×103 kg ha-1),阔叶灌丛林地凋落物产生总量(4.4×103 kg ha-1)略大于油松人工林(4.2×103 kg ha-1),最小的为连香树人工林(3.6×103 kg ha-1);叶是凋落物的主体,落叶类树种月动态表现为单峰型,高峰主要在10-11月,如落叶松、连香树和灌丛林;常绿的松类月动态不明显,各月基本相同,最为明显地为油松林,华山松人工林略有二个小峰,分别出现在11月和5月。落叶阔叶灌丛的凋落物分解速率大于常绿针叶林,如油松和华山松。结合凋落物的产生量和分解速率,不同树种人工林替代次生阔叶灌丛后,人工油松和华山松林枯落物总贮量和厚度明显大于落叶松人工林、灌丛林和连香树人工林,说明以油松和华山松为主的人工造林替代乡土阔叶灌丛延缓了有机物向土壤的顺利归还,不利于土壤C、N等养分循环。 4. 通过控制地面凋落物和地下根系输入有机物对土壤碳、氮的影响研究发现,(1) 单独去除根系以及根系与地面凋落物同时去除处理1年后对表层(0-10cm)土壤WDOC均没有显著影响,而土壤WDON显著增加,油松人工林土壤微生物生物量C、N显著降低,人工落叶松林没有显著差异,说明油松人工林土壤微生物活性对地下碳输入的依赖大于其它次生植被,而落叶松土壤微生物活性对地下碳输入依赖性较小;去除地面凋落物,明显降低了落叶松人工林土壤WDOC,华山松和连香树土壤WDON均较对照显著减少,油松人工林土壤微生物量C较对照显著减少;双倍增加地面凋落物处理对土壤微生物生物量、WDOC和WDON没有明显地增加,相反,连香树、华山松和油松人工林土壤WDON较对照减少。说明油松人工林微生物活性不仅依赖于地下碳输入,而且对地上有机物输入的依赖性也较大;连香树、落叶松和华山松人工林土壤微生物生物量并没有因地面凋落物的去除减少可能与土壤总有机碳含量及活性均较高有关,而双倍增加地面凋落物反而降低了土壤微生物生物量,说明凋落物覆盖后改变了土壤微气候。 5. 碳矿化累积量与有机碳含量和活性有机碳含量之间存在显著地正相关关系。凋落物碳累积矿化量、矿化速率以连香树最高,油松和华山松人工林次之,落叶阔叶灌丛低于常绿针叶纯林,导致其差异的主要原因可能为凋落物产生的时间动态模式不一样,致使凋落物起始分解时间不一致。而土壤层有机碳矿化速率和矿化量以阔叶落叶灌丛和连香树最高,油松和华山松人工土壤最低,再次证实利用针叶纯林恢复植被阻碍了有机质周转与循环。 6. 凋落物累积矿化量与C/N值呈显著地相关关系,并随着温度的升高而明显增加,而土壤累积矿化量与C/N值没有显著相关关系,说明土壤有机碳质量(C/N)对温度的响应不十分明显。通过双指数模型对不同温度下碳矿化过程进行模拟和计算出活性有机碳与惰性有机碳比例,发现温度升高促进了惰性有机碳向活性有机碳的转化,增加了活性有机碳含量,说明温度升高可促进次生植被凋落物与土壤有机质的分解,进而可影响到林地碳源/汇关系的变化。 综上,通过对不同人工替代次生植被凋落物与土壤C、N大小、以及土壤微生物生物量、水溶性C、N等指标动态变化模式研究,结合温度与凋落物数量输入等影响土壤活性C、N因子的综合分析,以油松和华山松人工纯林对山地植被恢复,延缓或阻碍了有机质周转与循环,造成了土壤肥力退化。对现有低效人工纯林改造,应为地面大量有机物分解创造条件。 Although soil microbial biomass, dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) are a small part of total soil organic carbon and nitrogen, they can directly participate in the process of soil biochemical translation and indicate the fine changes before changes of soil total organic carbon and nitrogen occur. So, they are good indexes to indicate soil restoration condition during the process of vegetation rehabilitation. There are large areas of secondary vegetations which substitute for indigenous shrubs in the eastern fringe of Qinghai-Tibet Plateau. However, it is not well known that the ecological effect and process after substitution by different secondary plantations. Based on comparison of soil organic and nitrogen contents in litter layer and soil under different secondary vegetations in upper reaches of Minjiang River, soil microbial biomass, DOC and DON in litter layer and soil were investigated in order to analyze the seasonal dynamic. Combining the effects of temperature, litter input and root exclusion on soil microbial biomass, DOC and DON, we also aim to understand the reason and mechanism of difference in soil carbon and nitrogen contents among different secondary vegetations. The study would contribute to comprehensively understanding C and N cycling processes and provide optimal control and sustainable technology of low-effect plantations in these regions. The results are as follows: (1) Organic carbon and nitrogen in litter layers and soil under different substitution plantations were investigated. The results showed that contents of soil organic carbon and nitrogen were lower in P. tabulaeformis (PT) and P. armandi Franch(PA) than those in native broad-leaf shrub and broad-leaf plantation. The low quality (C/N) of litter in PT and PA plantations caused carbon and nitrogen returning to soil difficultly. Seasonal dynamic of soil microbial carbon (MBC),-nitrogen (MBN),-phosphor (MBP), and WDOC and WDON showed similar pattern, which had the highest values in autumn and the lowest values in winter. (2) WDOC and WDON in litter layers and soil under PT and PA plantations were significantly lower than those in native broad-leaf shrub and Cercidiphyllum japonicum Sieb. et Zucc.(CJ). Soil MBC and MBN were also the lowest, while there were no significant differences among deciduous vegetations, i.e. native broad-leaf shrub, CJ and Larix kaempferi Lamb.(LK) plantation. The results suggested that difference in quantity and quality of available substance was main reason that affected the activity of microbe in soil and litter layer. MBC/OC and MBN/ON were good indexes to indicate the change of soil microbial activity. MBC/OC of litter had the highest value under native broad-leaf shrub and CJ plantation, and had the lowest value in PT and PA plantations, while MBC/OC of soil was the highest under CJ plantation, and was the lowest in PT and PA plantations. These results indicated that PT and PA plantations substituting for native broad-leaf shrub caused deficit of carbon and nitrogen in soil, low microbial activity was a main reason influencing the cycling and turnover of carbon and nitrogen in soil. (3) The annual litter fall production, composition, seasonal dynamic and decomposition of five typical secondary stands in upper reaches of Minjiang River were studied in this paper. The annual litter productions were: PA (5.1×103 kg ha-1), LK(4.8×103 kg ha-1), native broad-leaf shrub (4.4×103 kg ha-1), PT(4.2×103 kg ha-1),CJ(3.6×103 kg ha-1). The litter production of leaves in five secondary vegetations occupied a higher percentage in the annual total litter production than those of other components. The litterfall was mostly producted in the cool and dry period (October-November) for deciduous vegetations and relatively equably producted in every season for evergreen coniferous vegetations. The decomposition rate of leaf litter in the broad-leaf stand was higher than those in evergreen coniferous stand. Combined with annual litter fall production and decomposition rate of leaf litter, we found that stock and depth of litter layer were significantly larger in PT and PA plantations than those in native broad-leaf shrub, LK and CJ plantations. The results confirmed that PT and PA plantations substituting for native broad-leaf shrub delayed organic matter returning to soil and hindered cycling of carbon and nitrogen again. (4) We explored plant litter removal, double litter addition, root trenching, and combining root trenching and litter removal treatments to examine the effects of above- and belowground carbon inputs on soil microbial biomass, WDOC and WDON in four secondary plantations. During the experimental period from June 2007 to July 2008, 1 year after initiation of the treatments, WDOC in soil did not vary in root trenching, and combining root trenching and litter removal treatments, while WDON in soil significantly increased compared with CK treatment. Root trenching reduced soil MBC and MBN in PT plantation, while MBC and MBN in soil did not vary in LK plantation. The rasults implied that soil microbial activity was more dependent on belowground carbon input in PT plantation than those in other secondary plantations, on the contrary, soil microbial activity in LK plantation was not dependent on belowground carbon input. Plant litter removal significantly decreased soil WDOC in LK plantation, decreased WDON in PA and CJ plantations, and also significantly reduced soil MBC in PT plantation. However, double litter addition did not increase soil microbial biomass, WDOC and WDON, on the contrary, soil WDON in CJ, PA and PT plantations were decreased. These suggested that soil microbial activity was not only dependent on belowground carbon input, but also on aboveground organic material input. Double litter addition could change the microclimate and result in the decrease of soil microbial activity in CJ, PA and PT plantations. (5) We measured carbon mineralization in a 107 days incubation experiment in 5℃,15℃ and 25℃. Carbon cumulative mineralization was positively correlated with organic matter and labile organic carbon in litter layer and soil. Cumulative carbon mineralization and mineralization rate of litter layers in PT and PA plantations were higher than that in native broad-leaf shrub. This difference between native broad-leaf shrub and coniferous plantations in cumulative carbon mineralization and mineralization rate of litter layers could be attributed to the initiating time of decomposition due to the difference in seasonal dynamic of litter fall production between two types of secondary plantations. However, cumulative carbon mineralization and mineralization rate in soil were the highest in native broad-leaf shrub and CJ plantation, and were the lowest in PT and PA plantations. This also confirmed that PT and PA plantations substituting for native broad-leaf shrub hindered the cycling and turnover of organic matter again. (6) Carbon cumulative mineralization was positively correlated with C/N in litter layer and increased with temperature increasing, while carbon cumulative mineralization was not correlated with C/N in soil. This indicated that soil organic matter quality (C/N) was insensitive to temperature. Applying bi-exponential model, we computed the percent of labile and stable carbon in different temperature incubation and found that temperature increasing would accelerate the transform from stable carbon to labile carbon and increase the percentage of labile organic carbon. This illuminated that temperature incraesing could facilitate the decomposition of litter and soil organic matter in secondary vegetations and hence affect the relationship between carbon source and sink.
Resumo:
Due to a low mineral content, the sapropelic sediments depositing in Mangrove Lake, Bermuda, provide an excellent opportunity to explore for possible additions of sulfur to organic matter during the early stages of diagenesis. We evaluated early diagenetic organic sulfur transformations by monitoring the concentrations and stable isotopic compositions of a number of inorganic and organic sulfur pools, thereby accounting for all of the sulfur in the sediments. We have identified and quantified the following sulfur pools: porewater sulfate, porewater sulfide, elemental sulfur, pyrite sulfur, hydrolyzable organic sulfur (HYOS), chromium-reducible organic sulfur (CROS), and nonchromium-reducible organic sulfur (Non-CROS). Of the organic sulfur pools, the Non-CROS pool is by far the largest, followed by CROS, and finally HYOS. By 60 cm depth these pools contribute, respectively, to 85, 7.9, and 3.6% of the total solid phase sulfur. The HYOS pool is probably of biological origin and shows no interaction with the sulfur compounds produced during diagenesis. By contrast, CROS is produced, most likely, from the diagenetic addition of polysulfides to functionalized lipids in the upper, H2S-poor, elemental sulfur-rich, region of the sediment. A portion of this sulfur pool is unstable and decomposes on contact with the H2S-rich porewaters. The portion of CROS that remains in the sulfidic waters appears to readily exchange sulfur isotopes with H2S. While some of the Non-CROS pool is of biological origin, some is also formed by the diagenetic addition of sulfur to organic compounds in the upper H2S-poor region of the sediment. By contrast with CROS, Non-CROS is not diagenetically active in the H2S-rich porewaters. Overall, somewhere between 27 and 53 % of the organic sulfur buried in Mangrove Lake sediments is of diagenetic origin, with the remaining organic sulfur derived from biosynthesis. We extrapolate our Mangrove Lake results and calculate that in typical coastal marine sediments between 11 and 29 μmol g−1 of organic sulfur will form during early diagenesis, of which 2–5 μmol g−1 will be chromium reducible.
Resumo:
Persistent organic pollutants (POPs) are a set of chemicals that are toxic, persist in the environment for long periods of time, and biomagnify as they move up through the food chain. The most widely used method of POP destruction is incineration, which is expensive and could result in undesirable by-products. An alternative bioremediation technology, which is cheaper and environ-mentally friendly, was tested during this experiment. Two different soil types containing high and low organic matter (OM) were spiked with 100 mg/kg each of pyrene and Aroclor 1248 and planted with three different species of grasses. The objective of the study was to determine residue recovery levels (availability) and potential effectiveness of these plant species for the remediation of POPs. The results showed that recovery levels were highly dependent on the soil organic matter content—very low in all treatments with the high OM content soil compared to recoveries in the low OM soil. This indicates that availability, and, hence, biodegradability of the contaminants is dependent on the organic matter content of the soil. Moreover, the degree of availability was also significantly different for the two classes of chemicals. The polyaromatic hydrocarbon (PAH) recovery (availability) was extremely low in the high organic matter content soil compared to that of the polychlorinated biphenyls (PCBs). In both soil types, all of the plant species treatments showed significantly greater PCB biodegradation compared to the unplanted controls. Planting did not have any significant effect on the transformation of the PAHs in both soil types; however, planting with switchgrass was the best remedial option for both soil types contaminated with PCB.
Resumo:
Ammonia-oxidizing archaea (AOA) have recently been found to be potentially important in nitrogen cycling in a variety of environments, such as terrestrial soils, wastewater treatment reactors, marine waters and sediments, and especially in estuaries, where high input of anthropogenic nitrogen is often experienced. The sedimentary AOA diversity, community structure and spatial distribution in the Changjiang Estuary and the adjacent East China Sea were studied. Multivariate statistical analysis indicated that the archaeal amoA genotype communities could be clustered according to sampling transects, and the station located in an estuarine mixing zone harboured a distinct AOA community. The distribution of AOA communities correlated significantly with the gradients of surface-water salinity and sediment sorting coefficient. The spatial distribution of putative soil-related AOA in certain sampling stations indicated a strong impact of the Changjiang freshwater discharge on the marine benthic microbial ecosystem. Besides freshwater, nutrients, organic matter and suspended particles, the Changjiang Diluted Water might also contribute to the transport of terrestrial archaea into the seawater and sediments along its flow path.
Resumo:
Dissolved organic carbon (DOC), stable carbon isotopic (delta(13)C) compositions of DOC and particulate organic carbon (POC), and elemental C/N ratios of POC were measured for samples collected from the lower Mississippi and Atchafalaya rivers and adjacent coastal waters in the northern Gulf of Mexico during the low flow season in June 2000 and high flow season in April 2001. These isotopic and C/N results combined with DOC measurements were used to assess the sources and transport of terrestrial organic matter from the Mississippi and Atchafalaya rivers to the coastal region in the northern Gulf of Mexico. delta(13)C values of both POC (-23.8parts per thousand to -26.8parts per thousand) and DOC (-25.0parts per thousand to -29.0parts per thousand) carried by the two rivers were more depleted than the values measured for the samples collected in the offshore waters. Strong seasonal variations in delta(13)C distributions were observed for both POC and DOC in the surface waters of the region. Fresh water discharge and horizontal mixing played important roles in the distribution and transport of terrestrial POC and DOC offshore. Our results indicate that both POC and DOC exhibited non-conservative behavior during the mixing especially in the mid-salinity range. Based on a simple two end-member mixing model, the comparison of the measured DOC-delta(13)C with the calculated conservative isotopic mixing curve indicated that there was a significant in situ production of marine-derived DOC in the mid- to high-salinity waters consistent with our in situ chlorophyll-a measurements. Our DOC-delta(13)C data suggest that a removal of terrestrial DOC mainly occurred in the high-salinity (>25) waters during the mixing. Our study indicates that the mid- to high- (10-30) salinity range was the most dynamic zone for organic carbon transport and cycling in the Mississippi River estuary. Variability in isotopic and elemental compositions along with variability in DOC and POC concentrations suggest that autochthonous production, bacterial utilization, and photo-oxidation could all play important roles in regulating and removing terrestrial DOC in the northern Gulf of Mexico and further study of these individual processes is warranted. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Stable carbon isotopes of organic matter originated from different soil layers (0~5 cm, 5~15 cm, 15~25 cm, 25~35 cm, 35~50 cm, 50~65 cm) were investigated in the Haibei Alpine Meadow Ecosystem Research Station of the Chinese Academy of Sciences. The preliminary results indicated that δ13C values of soil organic matter increased with increased soil depth. δ13C of soil organic carbon in 0~5 cm layer showed the lowest value, -25.09‰; while 50~65 cm soil layer possessed the lowerδ13C value, -13.87‰. Based on mass balance model of stable isotopes, it was proposed that the percentage of C4 carbon source tend to increase with increased soil depth. The preliminary study indicated that alpine meadow might have undergone a successive process from C4-dominated community to C3-dominated one. However, changing δ13C values in atmospheric CO2 overtime and different processes of soil organic carbon formation (or eluviation) might somewhat contribute to increasing δ13C values. In this case, mass balance model would underestimate C3 community and overestimate C4 community.
Resumo:
High-resolution sampling, measurements of organic carbon contents and C-14 signatures of selected four soil profiles in the Haibei Station situated on the northeast Tibetan Plateau, and application of C-14 tracing technology were conducted in an attempt to investigate the turnover times of soil organic carbon and the soil-CO2 flux in the alpine meadow ecosystem. The results show that the organic carbon stored in the soils varies from 22.12x10(4) kg C hm(-2) to 30.75x10(4) kg C hm(-2) in the alpine meadow ecosystems, with an average of 26.86x10(4) kg C hm(-2). Turnover times of organic carbon pools increase with depth from 45 a to 73 a in the surface soil horizon to hundreds of years or millennia or even longer at the deep soil horizons in the alpine meadow ecosystems. The soil-CO2 flux ranges from 103.24 g C m(-2) a(-1) to 254.93 gC m(-2) a(-1), with an average of 191.23 g C m(-2) a(-1). The CO2 efflux produced from microbial decomposition of organic matter varies from 73.3 g C m(-2) a(-1) to 181 g C m(-2) a(-1). More than 30% of total soil organic carbon resides in the active carbon pool and 72.8%. 81.23% of total CO2 emitted from organic matter decomposition results from the topsoil horizon (from 0 cm to 10 cm) for the Kobresia meadow. Responding to global warming, the storage, volume of flow and fate of the soil organic carbon in the alpine meadow ecosystem of the Tibetan Plateau will be changed, which needs further research.