959 resultados para nonisothermal crystallization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electron spin resonance (ESR) of d5 ions (Fe3+ and Mn2+) has been investigated in PbO---PbF2 and PbO---PbCl2 glasses in wide ranges of composition. ESR spectra of d5 ions in these glasses exhibit significant differences which we have attributed to at least three important causes: (i) The ionic potentials of Fe3+ and Mn2+ are different. Hence Fe3+ ions tend to acquire their own environment while Mn2+ ions take up substitutional (Pb2+ ion) positions. (ii) The sizes and nephelauxetic behaviours of O2- and F- ions are similar. Thus even when there is a mixed anionic coordination, the environment of Mn2+ ions is highly symmetrical in oxyfluoride glasses. The Mn2+ spectra in oxychloride glasses are considerably different. (iii) Increase in halide ion concentration increases the ionicity of lead-ligand bonding and favours a more symmetrical environment around dopant ions in halide-rich glasses. The features in ESR spectra have been interpreted in the light of known behaviour of d5 ions in glasses and also in the context of known structural features of PbO---PbX2 glasses. Dopant ions appear to cluster at high concentrations although isolated low-symmetry sites are still observed. Effects of crystallization and annealing upon ESR spectra have also been investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal structure of the pentapeptide p-toluene-sulfonyl-(α-aminoisobutyryl)5-methyl ester (Tosyl-(Aib)5-OMe) has been determined in the space group PImage . Pentapeptide molecules are folded in the 310 helical conformation and packed together, so as to yield a hydrophobic channel with a minimim diameter of 5.2 �. The channel contains crystallographically disordered material. This structure provides a model for channel formation by hydrophobic peptide aggregates and should prove useful in studies of alamethicin, suzukacillin and related Aib containing membrane channels. Triclinic (PImage ) crystals of the pentapeptide are obtained in the presence of LiClO4 in aqueous methanol, whereas crystallization from methanol alone yields crystals in the space group Pbca. The conformations of the peptide in the two crystal forms are very similar and only the molecular packing is dramatically different.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study investigated the potato starches and polyols which were used to prepare edible films. The amylose content and the gelatinization properties of various potato starches extracted from different potato cultivars were determined. The amylose content of potato starches varied between 11.9 and 20.1%. Onset temperatures of gelatinization of potato starches in excess water varied independently of the amylose content from 58 to 61°C determined using differential scanning calorimetry (DSC). The crystallinity of selected native starches with low, medium and high amylose content was determined by X-ray diffraction. The relative crystallinity was found to be around 10 13% in selected native potato starches containing 13 17% water. The glass transition temperature, crystallization melting behavior and relaxations of polyols, erythritol, sorbitol and xylitol, were determined using (DSC), dielectric analysis (DEA) and dynamic mechanical analysis (DMA). The glass transition temperatures of xylitol and sorbitol decreased as a result of water plasticization. Anhydrous amorphous erythritol crystallized rapidly. Edible films were obtained from solutions containing gelatinized starch, plasticizer (polyol or binary polyol mixture) and water by casting and evaporating water at 35°C. The present study investigated effects of plasticizer type and content on physical and mechanical properties of edible films stored at various relative water vapor pressures (RVP). The crystallinity of edible films with low, medium and high amylose content was determined by X-ray diffraction and they were found to be practically amorphous. Water sorption and water vapor permeability (WVP) of films was affected by the type and content of plasticizer. Water vapor permeability of films increased with increasing plasticizer content and storage RVP. Generally, Young's modulus and tensile strength decreased with increasing plasticizer and water content with a concurrent increase in elongation at break of films. High contents of xylitol and sorbitol resulted in changes in physical and mechanical properties of films probably due to phase separation and crystallization of xylitol and sorbitol which was not observed when binary polyol mixtures were used as plasticizers. The mechanical properties and the water vapor permeability (WVP) of the films were found to be independent of the amylose content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coal seam gas (CSG) is a growing industry in Queensland and represents a potential major employer and deliverer of financial prosperity for years to come. CSG is a natural gas composed primarily of methane and is found trapped underground in coal beds. During the gas extraction process, significant volumes of associated water are also produced. This associated water could be a valuable resource, however, the associated water comprises of various salt constituents that make it problematic for beneficial use. Consequently, there is a need to implement various water treatment strategies to purify the associated water to comply with Queensland’s strict guidelines and to mitigate environmental risks. The resultant brine is also of importance as ultimately it also has to be dealt with in an economical manner. In some ways it can be considered that the CSG industry does not face a water problem, as this has inherent value to society, but rather has a “salt issue” to solve. This study analyzes the options involved in both the water treatment and salt recovery processes. A brief overview of the constituents present in Queensland CS water is made to illustrate the challenges involved and a range of treatment technologies discussed. Water treatment technologies examined include clarification (ballasted flocculation, dissolved air flotation, electrocoagulation), membrane filtration (ultrafiltration), ion exchange softening and desalination (ion exchange, reverse osmosis desalination and capacitance deionization). In terms of brine management we highlighted reinjection, brine concentration ponds, membrane techniques (membrane distillation, forward osmosis), thermal methods, electrodialysis, electrodialysis reversal, bipolar membrane electrodialysis, wind assisted intensive evaporation, membrane crystallization, eutectic freeze crystallization and vapor compression. As an entirety this investigation is designed to be an important tool in developing CS water treatment management strategies for effective management in Queensland and worldwide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New glasses of 16.66SrO–16.66[(1 − x)Bi2O3–xSm2O3]–16.66Nb2O5–50Li2B4O7 (0 ≤ x ≤ 0.5, in molar ratio), i.e., the pseudo-binary Sm2O3-doped SrBi2Nb2O9–Li2B4O7 glass system, giving the crystallization of Sm3+-doped SrBi2Nb2O9 nanocrystals are developed. It is found that the thermal stability of the glasses against the crystallization and the optical band gap energy increases with increasing Sm2O3 content. The formation of fluorite-type Sm3+-doped SrBi2Nb2O9 nanocrystals (diameters: 13–37 nm) with a cubic structure is confirmed in the crystallized (530 °C, 3 h) samples from X-ray powder diffraction analyses, Raman scattering spectrum measurements, and transmission electron microscope observations. The effect of Sm3+-doping on the microstructure, Raman scattering peak positions, and dielectric properties of composites comprising of fluorite-type SrBi2Nb2O9 nanocrystals and the Li2B4O7 glassy phase is clarified. It is found that fluorite-type SrBi2Nb2O9 nanocrystals transform to stable perovskite-type SrBi2Nb2O9 crystals with an orthorhombic structure by heat treatments at around 630 °C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photocatalytic TiO2 thin films can be highly useful in many environments and applications. They can be used as self-cleaning coatings on top of glass, tiles and steel to reduce the amount of fouling on these surfaces. Photocatalytic TiO2 surfaces have antimicrobial properties making them potentially useful in hospitals, bathrooms and many other places where microbes may cause problems. TiO2 photocatalysts can also be used to clean contaminated water and air. Photocatalytic oxidation and reduction reactions proceed on TiO2 surfaces under irradiation of UV light meaning that sunlight and even normal indoor lighting can be utilized. In order to improve the photocatalytic properties of TiO2 materials even further, various modification methods have been explored. Doping with elements such as nitrogen, sulfur and fluorine, and preparation of different kinds of composites are typical approaches that have been employed. Photocatalytic TiO2 nanotubes and other nanostructures are gaining interest as well. Atomic Layer Deposition (ALD) is a chemical gas phase thin film deposition method with strong roots in Finland. This unique modification of the common Chemical Vapor Deposition (CVD) method is based on alternate supply of precursor vapors to the substrate which forces the film growth reactions to proceed only on the surface in a highly controlled manner. ALD gives easy and accurate film thickness control, excellent large area uniformity and unparalleled conformality on complex shaped substrates. These characteristics have recently led to several breakthroughs in microelectronics, nanotechnology and many other areas. In this work, the utilization of ALD to prepare photocatalytic TiO2 thin films was studied in detail. Undoped as well as nitrogen, sulfur and fluorine doped TiO2 thin films were prepared and thoroughly characterized. ALD prepared undoped TiO2 films were shown to exhibit good photocatalytic activities. Of the studied dopants, sulfur and fluorine were identified as much better choices than nitrogen. Nanostructured TiO2 photocatalysts were prepared through template directed deposition on various complex shaped substrates by exploiting the good qualities of ALD. A clear enhancement in the photocatalytic activity was achieved with these nanostructures. Several new ALD processes were also developed in this work. TiO2 processes based on two new titanium precursors, Ti(OMe)4 and TiF4, were shown to exhibit saturative ALD-type of growth when water was used as the other precursor. In addition, TiS2 thin films were prepared for the first time by ALD using TiCl4 and H2S as precursors. Ti1-xNbxOy and Ti1-xTaxOy transparent conducting oxide films were prepared successfully by ALD and post-deposition annealing. Highly unusual, explosive crystallization behaviour occurred in these mixed oxides which resulted in anatase crystals with lateral dimensions over 1000 times the film thickness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study brings new insights into the magmatic evolution of natural F-enriched peraluminous granitic systems. The Artjärvi, Sääskjärvi and Kymi granite stocks within the 1.64 Ga Wiborg rapakivi granite batholith have been investigated by petrographic, geochemical, experimental and melt inclusion methods. These stocks represent late-stage leucocratic and weakly peraluminous intrusive phases typical of rapakivi granites worldwide. The Artjärvi and Sääskjärvi stocks are multiphase intrusions in which the most evolved phase is topaz granite. The Kymi stock contains topaz throughout and has a well-developed zoned structure, from the rim to the center: stockscheider pegmatite equigranular topaz granite porphyritic topaz granite. Geochemically the topaz granites are enriched in F, Li, Be, Ga, Rb, Sn and Nb and depleted in Mg, Fe, Ti, Ba, Sr, Zr and Eu. The anomalous geochemistry and mineralogy of the topaz granites are essentially magmatic in origin; postmagmatic reactions have only slightly modified the compositions. The Kymi equigranular topaz granite shows the most evolved character, and the topaz granites at Artjärvi and Sääskjärvi resemble the less evolved porphyritic topaz granite of the Kymi stock. Stockscheiders are found at the roof contacts of the Artjärvi and Kymi stocks. The stockscheider at Artjärvi is composed of biotite-rich schlieren and pegmatite layers parallel to the contact. The schlieren layering is considered to have formed by velocity-gradient sorting mechanism parallel to the flow, which led to the accumulation of mafic minerals along the upper contact of the topaz granite. Cooling and contraction of the topaz granite formed fractures parallel to the roof contact and residual pegmatite magmas were injected along the fractures and formed the pegmatite layers. The zoned structure of the Kymi stock is the result of intrusion of highly evolved residual melt from deeper parts of the magma chamber along the fractured contact between the porphyritic granite crystal mush and country rock. The equigranular topaz granite and marginal pegmatite (stockscheider) crystallized from this evolved melt. Phase relations of the Kymi equigranular topaz granite have been investigated utilizing crystallization experiments at 100 to 500 MPa as a function of water activity and F content. Fluorite and topaz can crystallize as liquidus phases in F-rich peraluminous systems, but the F content of the melt should exceed 2.5 - 3.0 wt % to facilitate crystallization of topaz. In peraluminous F-bearing melts containing more than 1 wt % F, topaz and muscovite are expected to be the first F-bearing phases to crystallize at high pressure, whereas fluorite and topaz should crystallize first at low pressure. Overall, the saturation of fluorite and topaz follows the reaction: CaAl2Si2O8 (plagioclase) + 2[AlF3]melt = CaF2 (fluorite) + 2Al2SiO4F2 (topaz). The obtained partition coefficient for F between biotite and glass D(F)Bt/glass is 1.89 to 0.80 (average 1.29) and can be used as an empirical fluormeter to determine the F content of coexisting melts. In order to study the magmatic evolution of the Kymi stock, crystallized melt inclusions in quartz and topaz grains in the porphyritic and the equigranular topaz granites and the marginal pegmatite were rehomogenized and analyzed. The homogenization conditions for the melt inclusions from the granites were 700 °C, 300 MPa, and 24 h, and for melt inclusions from the pegmatite, 700 °C, 100 MPa, and 24/96 h. The majority of the melt inclusions is chemically similar to the bulk rocks (excluding H2O content), but a few melt inclusions in the equigranular granite show clearly higher F and low K2O contents (on average 11.6 wt % F, 0.65 wt % K2O). The melt inclusion compositions indicate coexistence of two melt fractions, a prevailing peraluminous and a very volatile-rich, possibly peralkaline. Combined petrological, experimental and melt inclusion studies of the Kymi equigranular topaz granite indicate that plagioclase was the liquidus phase at nearly water-saturated (fluid-saturated) conditions and that the F content of the melt was at least 2 wt %. The early crystallization of biotite and the presence of muscovite in crystallization experiments at 200 MPa contrasts with the late-stage crystallization of biotite and the absence of muscovite in the equigranular granite, indicating that crystallization pressure may have been lower than 200 MPa for the granite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The theoretical analysis, based on the perturbation technique, of ion-acoustic waves in the vicinity of a Korteweg-de Vries (K-dV) equation derived in a plasma with some negative ions has been made. The investigation shows that the negative ions in plasma with isothermal electrons introduced a critical concentration at which the ion-acoustic wave plays an important role of wave-breaking and forming a precursor while the plasma with non-isothermal electrons has no such singular behaviour of the wave. These two distinct features of ion waves lead to an overall different approach of present study of ion-waves. A distinct feature of non-uniform transition from the nonisothermal case to isothermal case has been shown. Few particular plasma models have been chosen to show the characteristics behaviour of the ion-waves existing in different cases

Relevância:

10.00% 10.00%

Publicador:

Resumo:

4-Methyl-5-beta-hydroxyethylthiazole kinase (ThiK) catalyses the phosphorylation of the hydroxyl group of 4-methyl-5-beta-hydroxyethylthiazole. This work reports the first crystal structure of an archaeal ThiK: that from Pyrococcus horikoshii OT3 (PhThiK) at 1.85 angstrom resolution with a phosphate ion occupying the position of the beta-phosphate of the nucleotide. The topology of this enzyme shows the typical ribokinase fold of an alpha/beta protein. The overall structure of PhThiK is similar to those of Bacillus subtilis ThiK (BsThiK) and Enterococcus faecalis V583 ThiK (EfThiK). Sequence analysis of ThiK enzymes from various sources indicated that three-quarters of the residues involved in interfacial regions are conserved. It also revealed that the amino-acid residues in the nucleotide-binding, magnesium ion-binding and substrate-binding sites are conserved. Binding of the nucleotide and substrate to the ThiK enzyme do not influence the quaternary association (trimer) as revealed by the crystal structure of PhThiK.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four GDNF ligands (GDNF, neurturin, artemin and persephin), and mesencephalic astrocyte-derived neurotrophic factor (MANF) and conserved dopamine neurotrophic factor (CDNF) protect midbrain dopaminergic neurons that degenerate in Parkinson's disease. Each GDNF ligand binds a specific coreceptor GDNF family receptor α (GFRα), leading to the formation of a heterotetramer complex, which then interacts with receptor tyrosine kinase RET, the signalling receptor. The present thesis describes the structural and biochemical characterization of the GDNF2-GFRα12 complex and the MANF and CDNF proteins. Previous and current mutation data and comparison between GDNF-GFRα1 and artemin-GFRα3 binding interfaces show that N162GFRα1, I175GFRα1, V230GFRα1, Y120GDNF and L114GDNF are the specificity determinants among different ligand-coreceptor pairs. The structure suggests that sucrose octasulphate, a heparin mimic, interacts with a region R190-K202 within domain 2 of GFRα1. Mutating these residues on the GFRα1 surface, which are not in the GDNF binding region, affected RET phosphorylation, which provides a putative RET binding region in domain 2 and 3 of GFRα1. The structural comparison of the GDNF-GFRα1 and artemin-GFRα3 complexes shows a difference in bend angle between the ligand monomers. This variation in bend angle of the ligand may affect the kinetics of RET phosphorylation. To confirm that the difference is not due to crystallization artefacts, I crystallized the GDNF-GFRα1 complex without SOS in different cell dimensions. The structure of the second GDNF-GFRα1 complex is very similar to the previous one, suggesting that the difference between the artemin-GFRα3 and GDNF-GFRα1 complexes are intrinsic, not due to crystal packing. Finally, MANF and CDNF are bifunctional proteins with extracellular neurotrophic activity and ER resident cytoprotective role. The crystal structures of MANF and CDNF are presented here. Intriguingly, the structures of both the neurotrophic factors do not show structural similarity to any of previously known growth factor superfamilies; instead they are similar to saposins, the lipid-binding proteins. The N-terminal domain of MANF and CDNF contain conserved lysines and arginines on its surface, which may interact with negatively charged head groups of phospholipids, as saposins do. Thus MANF and CDNF may provide neurotrophic activities by interacting with a lipo-receptor. The structure of MANF shows a CXXC motif forming internal disulphide bridge in the natively unfolded C-terminus. This motif is common to reductases and disulphide isomerases. It is thus tempting to speculate that the CXXC motif of MANF and CDNF may be involved in oxidative protein folding, which may explain its cytoprotective role in the ER.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this research fabrication of crystalline PbZrO3 (PZ) nanoparticles and their phase transformation behavior is investigated. A novel sol-gel method was used for the synthesis of air-stable and precipitate-free diol-based sol of PZ, which was dried at 150 degrees C and then calcined at 300-700 degrees C for 1 h. The morphology, crystallinity and phase formation of as synthesized nanoparticles were studied by the selected-area electron diffraction (SAED), X-ray diffraction (XRD), thermal gravimetric analysis/differential scanning calorimetry (TGA-DSC), and high resolution transmission electron microscope (HRTEM). The XRD, SAED, and TGA-DSC analyses confirmed the tetragonal lead rich zirconia phase (t-Z phase) and monoclinic zirconia phase (m-Z phase) as the intermediate phases during the calcinations process followed by crystallization of single orthorhombic PZ phase at about 700 degrees C. The average PZ particle size was observed about 20 nm as confirmed by TEM study. Energy-dispersive X-ray spectroscopy (EDX) analysis demonstrated that stoichiometric PbZrO3 was formed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation of heterojunctions between two crystals with different band gap structures, acting as a tunnel for the unidirectional transfer of photo-generated charges, is an efficient strategy to enhance photocatalytic performance in semiconductor photocatalysts. The heterojunctions may also promote the photoactivity in the visible-light-response of any surface complex catalysts by influencing the transfer of photo-generated electrons. Herein, Nb2O5 microfibers, with a high surface area of interfaces between an amorphous phase and crystalline phase, were designed and synthesised by the calcination of hydrogen-form niobate while controlling the crystallization The photoactivity of these microfibers towards selective aerobic oxidation reactions was investigated. As predicted, the Nb2O5 microfibres containing heterojunctions exhibited the highest photoactivity. This could be due to the band gap difference between the amorphous phase and the crystalline phase, which shortened the charge mobile distance and improved the efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ligand bis(diphenylphosphino) isopropylamine (dppipa) has been shown to be a versatile ligand sporting different coordination modes and geometries dictated by copper(I). Most of the molecular structures were confirmed by X-ray crystallography. It is found in a chelating mode, in a monomeric complex when the ligand to copper ratio is 2:1. A tetrameric complex is formed when low ratios of ligand to metal (1: 2) were used. But with increasing ratios of ligand to metal (1: 1 and 2: 1), a trimer or a dimer was obtained depending on the crystallization conditions. Variable temperature P-31{H-1} NMR spectra of these complexes in solution showed that the Cu-P bond was labile and the highly strained 4-membered structure chelate found in the solid state readily converted to a bridged structures. On the other hand, complexes with the ligand in a bridging mode in the solid state did not form chelated structures in solution. The effect of adding tetra-alkylammonium salts to solutions of various complexes of dppipa were probed by P-31{H-1} NMR and revealed the effect of counter ions on the stability of complexes in solution. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments on Ge15Tc85-xSix glasses (2 <= x <= 12) using alternating differential scanning calorimetry (ADSC) indicate that these glasses exhibit one glass transition and two crystallization reactions upon heating. The glass transition temperature has been found to increase almost linearly with silicon content, in the entire composition tie-line. The first crystallization temperature (T-cl) exhibits an increase with silicon content for x<5; T-cl remains almost a constant in the composition range 5 < x <= 10 and it increases comparatively more sharply with silicon content thereafter. The specific heat change (Delta C-p) is found to decrease with an increase in silicon content, exhibiting a minimum at x=5 (average coordination number, (r) = 2.4); a continuous increase is seen in Delta C-p with silicon concentration above x = 5. The effects seen in the variation with composition of T-cl and Delta C-p at x=5, are the specific signatures of the mean-field stiffness threshold at (r) = 2.4. Furthermore, a broad trough is seen in the enthalpy change (Delta H-NR), which is indicative of a thermally reversing window in Ge15Te85-xSix glasses in the composition range 2 <= x <= 6 (2.34 <= (r) <= 2.42).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrical switching and differential scanning calorimetric studies are undertaken on bulk As20Te80-xGax glasses, to elucidate the network topological thresholds. It is found that these glasses exhibit a single glass transition (T-g) and two crystallization reactions (T-cl & T-c2) upon heating. It is also found that there is only a marginal change in T-g with the addition of up to about 10% of Ga; around this composition an increase is seen in 7, which culminates in a local maximum around x = 15. The decrease exhibited in T, beyond this composition, leads to a local minimum at x = 17.5. Further, the As20Te80-xGax glasses are found to exhibit memory type electrical switching. The switching voltages (VT) increase with the increase in gallium content and a local maximum is seen in V-tau around x = 15. VT is found to decrease with x thereafter, exhibiting a local minimum around x = 17.5. The composition dependence of T-cl is found to be very similar to that of V-T of As20Te80-xGax glasses. Based on the present results, it is proposed that the composition x = 15 and x = 17.5 correspond to the rigidity percolation and chemical thresholds, respectively, of As20Te80-xGax glasses. (c) 2007 Elsevier B.V. All rights reserved.