828 resultados para non-state actors
Resumo:
The purpose of this volume is to examine and evaluate the impact of international state-building interventions on the political economy of post-conflict countries over the last 20 years. It analyses how international interventions have shaped political and economic dynamics and structures – both formal and informal – and what kind of state, and what kind of state-society relations have been created as a result, through three different lenses: first, through the approaches taken by different international actors like the UN, the International Financial Institutions, or the European Union, to state-building; second, through detailed analysis of key state-building policies; and third, through a wide range of country case studies. Amongst the recurring themes that are highlighted by the book’s focus on the political economy of state-building, and that help to explain why international state-building interventions have tended to fall short of the visions of interveners and local populations alike are evidence of important continuities between war-time and “post-conflict” economies and authority structures, which are often consolidated as a consequence of international involvement; tensions arising from what are often the competing interests and values held by different interveners and local actors; and, finally, the continuing salience of economic and political violence in state-building processes and war-to-peace transitions. The book aims to offer a more nuanced understanding of the complex impact of state-building practices on post-conflict societies, and of the political economy of post-conflict state-building.
Resumo:
Steady state and dynamic models have been developed and applied to the River Kennet system. Annual nitrogen exports from the land surface to the river have been estimated based on land use from the 1930s and the 1990s. Long term modelled trends indicate that there has been a large increase in nitrogen transport into the river system driven by increased fertiliser application associated with increased cereal production, increased population and increased livestock levels. The dynamic model INCA Integrated Nitrogen in Catchments. has been applied to simulate the day-to-day transport of N from the terrestrial ecosystem to the riverine environment. This process-based model generates spatial and temporal data and reproduces the observed instream concentrations. Applying the model to current land use and 1930s land use indicates that there has been a major shift in the short term dynamics since the 1930s, with increased river and groundwater concentrations caused by both non-point source pollution from agriculture and point source discharges. �
Resumo:
Three Cu(II)-azido complexes of formula [Cu2L2(N-3)(2)] (1), [Cu2L2(N-3)(2)]center dot H2O (2) and [CuL(N-3)](n) (3) have been synthesized using the same tridentate Schiff base ligand HL (2-[(3-methylaminopropylimino)-methyl]-phenol), the condensation product of N-methyl-1,3-propanediamine and salicyldehyde). Compounds 1 and 2 are basal-apical mu-1,1 double azido bridged dimers. The dimeric structure of 1 is centro-symmetric but that of 2 is non-centrommetric. Compound 3 is a mu-1,1 single azido bridged 1D chain. The three complexes interconvert in solution and can be obtained in pure form by carefully controlling the synthetic conditions. Compound 2 undergoes an irreversible transformation to 1 upon dehydration in the solid state. The magnetic properties of compounds 1 and 2 show the presence of weak antiferromagnetic exchange interactions mediated by the double 1,1-N-3 azido bridges (J = -2.59(4) and -0.10(1) cm-(1), respectively). The single 1,1-N-3 bridge in compound 3 mediates a negligible exchange interaction.
Resumo:
Social housing policy in the UK mirrors wider processes Associated with shifts in broad welfare regimes. Social housing has moved from dominance by state housing provision to the funding of new investment through voluntary sector housing associations to what is now a greater focus on the regulation and private financing of these not-for-profit bodies. If these trends run their course, we are likely to see a range of not-for-profit bodies providing non-market housing in a highly regulated quasi-market. This paper examines these issues through the lens of new institutional economics, which it is believed can provide important insights into the fundamental contractual and regulatory relationships that are coming to dominate social housing from the perspective of the key actors in the sector (not-for-profit housing organisations, their tenants, private lenders and the regulatory state). The paper draws on evidence recently collected from a study evaluating more than 100 stock transfer organisations that inherited ex-public housing in Scotland, including 12 detailed case studies. The paper concludes that social housing stakeholders need to be aware of the risks (and their management) faced across the sector and that the state needs to have clear objectives for social housing and coherent policy instruments to achieve those ends.
Resumo:
Global wetlands are believed to be climate sensitive, and are the largest natural emitters of methane (CH4). Increased wetland CH4 emissions could act as a positive feedback to future warming. The Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP) investigated our present ability to simulate large-scale wetland characteristics and corresponding CH4 emissions. To ensure inter-comparability, we used a common experimental protocol driving all models with the same climate and carbon dioxide (CO2) forcing datasets. The WETCHIMP experiments were conducted for model equilibrium states as well as transient simulations covering the last century. Sensitivity experiments investigated model response to changes in selected forcing inputs (precipitation, temperature, and atmospheric CO2 concentration). Ten models participated, covering the spectrum from simple to relatively complex, including models tailored either for regional or global simulations. The models also varied in methods to calculate wetland size and location, with some models simulating wetland area prognostically, while other models relied on remotely sensed inundation datasets, or an approach intermediate between the two. Four major conclusions emerged from the project. First, the suite of models demonstrate extensive disagreement in their simulations of wetland areal extent and CH4 emissions, in both space and time. Simple metrics of wetland area, such as the latitudinal gradient, show large variability, principally between models that use inundation dataset information and those that independently determine wetland area. Agreement between the models improves for zonally summed CH4 emissions, but large variation between the models remains. For annual global CH4 emissions, the models vary by ±40% of the all-model mean (190 Tg CH4 yr−1). Second, all models show a strong positive response to increased atmospheric CO2 concentrations (857 ppm) in both CH4 emissions and wetland area. In response to increasing global temperatures (+3.4 °C globally spatially uniform), on average, the models decreased wetland area and CH4 fluxes, primarily in the tropics, but the magnitude and sign of the response varied greatly. Models were least sensitive to increased global precipitation (+3.9 % globally spatially uniform) with a consistent small positive response in CH4 fluxes and wetland area. Results from the 20th century transient simulation show that interactions between climate forcings could have strong non-linear effects. Third, we presently do not have sufficient wetland methane observation datasets adequate to evaluate model fluxes at a spatial scale comparable to model grid cells (commonly 0.5°). This limitation severely restricts our ability to model global wetland CH4 emissions with confidence. Our simulated wetland extents are also difficult to evaluate due to extensive disagreements between wetland mapping and remotely sensed inundation datasets. Fourth, the large range in predicted CH4 emission rates leads to the conclusion that there is both substantial parameter and structural uncertainty in large-scale CH4 emission models, even after uncertainties in wetland areas are accounted for.
Resumo:
In this paper we discuss the current state-of-the-art in estimating, evaluating, and selecting among non-linear forecasting models for economic and financial time series. We review theoretical and empirical issues, including predictive density, interval and point evaluation and model selection, loss functions, data-mining, and aggregation. In addition, we argue that although the evidence in favor of constructing forecasts using non-linear models is rather sparse, there is reason to be optimistic. However, much remains to be done. Finally, we outline a variety of topics for future research, and discuss a number of areas which have received considerable attention in the recent literature, but where many questions remain.
Resumo:
This article considers whether, in the context of armed conflicts, certain non-refoulement obligations of non-belligerent States can be derived from the 1949 Geneva Conventions. According to Common Article 1 (CA1) thereof, all High Contracting Parties (HCPs) undertake to ‘respect and to ensure respect’ for the four conventions ‘in all circumstances’. It is contended that CA1 applies both in international armed conflicts (IACs) and in non-international armed conflicts (NIACs). In turn, it is suggested that Common Article 3 (CA3) which regulates conduct in NIACs serves as a ‘minimum yardstick’ also applicable in IACs. It is widely (though not uniformly) acknowledged that the undertaking to ‘ensure respect’ in a given armed conflict extends to HCPs that are not parties to it; nevertheless, the precise scope of this undertaking is subject to scholarly debate. This article concerns situations where, in the course of an (international or non-international) armed conflict, persons ’taking no active part in hostilities’ flee from States where violations of CA3 are (likely to be) occurring to a non-belligerent State. Based on the undertaking in CA1, the central claim of this article is that, as long as risk of exposure to these violations persists, persons should not be refouled notwithstanding possible assessment of whether they qualify as refugees based on the 1951 Refugee Convention definition, or could be eligible for complementary or subsidiary forms of protection that are regulated in regional arrangements. The analysis does not affect the explicit protection from refoulement that the Fourth Geneva Convention accords to ‘protected persons’ (as defined in Article 4 thereof). It is submitted that CA1 should be read in tandem with other obligations of non-belligerent States under the 1949 Geneva Conventions. Most pertinently, all HCPs are required to take specific measures to repress ‘grave breaches’ and to take measures necessary for the suppression of all acts contrary to the 1949 Geneva Conventions other than the grave breaches. A HCP that is capable of protecting displaced persons from exposure to risks of violations of CA3 and nonetheless refoules them to face such risks is arguably failing to take lawful measures at its disposal in order to suppress acts contrary to the conventions and, consequently, fails to ‘ensure respect’ for the conventions. KEYWORDS Non-refoulement; International Armed Conflict; Non-International Armed Conflict; Common Article 1; Common Article 3
Resumo:
We discuss the modelling of dielectric responses of amorphous biological samples. Such samples are commonly encountered in impedance spectroscopy studies as well as in UV, IR, optical and THz transient spectroscopy experiments and in pump-probe studies. In many occasions, the samples may display quenched absorption bands. A systems identification framework may be developed to provide parsimonious representations of such responses. To achieve this, it is appropriate to augment the standard models found in the identification literature to incorporate fractional order dynamics. Extensions of models using the forward shift operator, state space models as well as their non-linear Hammerstein-Wiener counterpart models are highlighted. We also discuss the need to extend the theory of electromagnetically excited networks which can account for fractional order behaviour in the non-linear regime by incorporating nonlinear elements to account for the observed non-linearities. The proposed approach leads to the development of a range of new chemometrics tools for biomedical data analysis and classification.
Resumo:
A global, time-dependent, three-dimensional, coupled ionosphere-thermosphere model is used to predict the spatial distribution of non-thermal plasma in the F-layer. It is shown that, even for steady-state conditions with Kp as low as 3, the difference between the ion and neutral velocities often exceeds the neutral thermal speed by a factor, D', which can be as large as 4. Theoretically, highly non-Maxwellian, and probably toroidal, ion velocity distributions are expected when D' exceeds about 1.5. The lack of response of the neutral winds to sunward ion drifts in the dawn sector of the auroral oval cause this to be the region most likely to contain toroidal distributions. The maximum in D' is found in the throat region of the convection pattern, where the strong neutral winds of the afternoon sector meet the eastward ion flows of the morning sector. These predictions are of interest, not only to radar scientists searching for non-thermal ionospheric plasma, but also as one possible explanation of the initial heating and upward flows of ions in the cleft ion fountain and nightside auroral oval, both of which are a major source of plasma for the magnetosphere.
Resumo:
Background Psychophysiological theories suggest that individuals with anxiety disorders may evidence inflexibility in their autonomic activity at rest and when responding to stressors. In addition, theories of social anxiety disorder, in particular, highlight the importance of physical symptoms. Research on autonomic activity in childhood (social) anxiety disorders, however, is scarce and has produced inconsistent findings, possibly because of methodological limitations. Method The present study aimed to account for limitations of previous studies and measured respiratory sinus arrhythmia (RSA) and heart rate (HR) using Actiheart heart rate monitors and software (Version 4) during rest and in response to a social and a non-social stressor in 60 anxious (30 socially anxious and 30 ‘other’ anxious), and 30 nonanxious sex-and age-matched 7–12 year olds. In addition, the effect of state anxiety during the tasks was explored. Results No group differences at rest or in response to stress were found. Importantly, however, with increases in state anxiety, all children, regardless of their anxiety diagnoses showed less autonomic responding (i.e., less change in HR and RSA from baseline in response to task) and took longer to recover once the stressor had passed. Limitations This study focused primarily on parasympathetic arousal and lacked measures of sympathetic arousal. Conclusion The findings suggest that childhood anxiety disorders may not be characterized by inflexible autonomic responding, and that previous findings to the contrary may have been the result of differences in subjective anxiety between anxious and nonanxious groups during the tasks, rather than a function of chronic autonomic dysregulation.
Resumo:
The theory of wave–mean flow interaction requires a partition of the atmospheric flow into a notional background state and perturbations to it. Here, a background state, known as the Modified Lagrangian Mean (MLM), is defined as the zonally symmetric state obtained by requiring that every potential vorticity (PV) contour lying within an isentropic layer encloses the same mass and circulation as in the full flow. For adiabatic and frictionless flow, these two integral properties are time-invariant and the MLM state is a steady solution of the primitive equations. The time dependence in the adiabatic flow is put into the perturbations, which can be described by a wave-activity conservation law that is exact even at large amplitude. Furthermore, the effects of non-conservative processes on wave activity can be calculated from the conservation law. A new method to calculate the MLM state is introduced, where the position of the lower boundary is obtained as part of the solution. The results are illustrated using Northern Hemisphere ERA-Interim data. The MLM state evolves slowly, implying that the net non-conservative effects are weak. Although ‘adiabatic eddy fluxes’ cannot affect the MLM state, the effects of Rossby-wave breaking, PV filamentation and subsequent dissipation result in sharpening of the polar vortex edge and meridional shifts in the MLM zonal flow, both at tropopause level and on the winter stratospheric vortex. The rate of downward migration of wave activity during stratospheric sudden warmings is shown to be given by the vertical scale associated with polar vortex tilt divided by the time-scale for wave dissipation estimated from the wave-activity conservation law. Aspects of troposphere–stratosphere interaction are discussed. The new framework is suitable to examine the climate and its interactions with disturbances, such as midlatitude storm tracks, and makes a clean partition between adiabatic and non-conservative processes.
Resumo:
In this study, the atmospheric component of a state-of-the-art climate model (HadGEM2-ES) that includes earth system components such as interactive chemistry and eight species of tropospheric aerosols considering aerosol direct, indirect, and semi-direct effects, has been used to investigate the impacts of local and non-local emissions of anthropogenic sulphur dioxide on the East Asian summer monsoon (EASM). The study focuses on the fast responses (including land surface feedbacks, but without sea surface temperature feedbacks) to sudden changes in emissions from Asia and Europe. The initial responses, over days 1–40, to Asian and European emissions show large differences. The response to Asian emissions involves a direct impact on the sulphate burden over Asia, with immediate consequences for the shortwave energy budget through aerosol–radiation and aerosol–cloud interactions. These changes lead to cooling of East Asia and a weakening of the EASM. In contrast, European emissions have no significant impact on the sulphate burden over Asia, but they induce mid-tropospheric cooling and drying over the European sector. Subsequently, however, this cold and dry anomaly is advected into Asia, where it induces atmospheric and surface feedbacks over Asia and the Western North Pacific (WNP), which also weaken the EASM. In spite of very different perturbations to the local aerosol burden in response to Asian and European sulphur dioxide emissions, the large scale pattern of changes in land–sea thermal contrast, atmospheric circulation and local precipitation over East Asia from days 40 onward exhibits similar structures, indicating a preferred response, and suggesting that emissions from both regions likely contributed to the observed weakening of the EASM. Cooling and drying of the troposphere over Asia, together with warming and moistening over the WNP, reduces the land–sea thermal contrast between the Asian continent and surrounding oceans. This leads to high sea level pressure (SLP) anomalies over Asia and low SLP anomalies over the WNP, associated with a weakened EASM. In response to emissions from both regions warming and moistening over the WNP plays an important role and determines the time scale of the response.
Resumo:
During the past decade, brain–computer interfaces (BCIs) have rapidly developed, both in technological and application domains. However, most of these interfaces rely on the visual modality. Only some research groups have been studying non-visual BCIs, primarily based on auditory and, sometimes, on somatosensory signals. These non-visual BCI approaches are especially useful for severely disabled patients with poor vision. From a broader perspective, multisensory BCIs may offer more versatile and user-friendly paradigms for control and feedback. This chapter describes current systems that are used within auditory and somatosensory BCI research. Four categories of noninvasive BCI paradigms are employed: (1) P300 evoked potentials, (2) steady-state evoked potentials, (3) slow cortical potentials, and (4) mental tasks. Comparing visual and non-visual BCIs, we propose and discuss different possible multisensory combinations, as well as their pros and cons. We conclude by discussing potential future research directions of multisensory BCIs and related research questions
Resumo:
BACKGROUND Little is known about native and non-native rodent species interactions in complex tropical agro-ecosystems. We hypothesised that the native non-pest rodent Rattus everetti may be competitively dominant over the invasive pest rodent Rattus tanezumi within agroforests. We tested this experimentally by using pulse removal for three consecutive months to reduce populations of R. everetti in agroforest habitat and assessed over 6-months the response of R. tanezumi and other rodent species. RESULTS Following removal, R. everetti individuals rapidly immigrated into removal sites. At the end of the study period, R. tanezumi were larger and there was a significant shift in their microhabitat use with respect to the use of ground vegetation cover following the perturbation of R. everetti. Irrespective of treatment, R. tanezumi selected microhabitat with less tree canopy cover, indicative of severely disturbed habitat, whereas, R. everetti selected microhabitat with a dense canopy. CONCLUSION Our results suggest that sustained habitat disturbance in agroforests favours R. tanezumi, whilst the regeneration of agroforests towards a more natural state would favour native species and may reduce pest pressure in adjacent crops. In addition, the rapid recolonisation of R. everetti suggests this species would be able to recover from non-target impacts of short-term rodent pest control.
Resumo:
Philosophy has repeatedly denied cinema in order to grant it artistic status. Adorno, for example, defined an ‘uncinematic’ element in the negation of movement in modern cinema, ‘which constitutes its artistic character’. Similarly, Lyotard defended an ‘acinema’, which rather than selecting and excluding movements through editing, accepts what is ‘fortuitous, dirty, confused, unclear, poorly framed, overexposed’. In his Handbook of Inaesthetics, Badiou embraces a similar idea, by describing cinema as an ‘impure circulation’ that incorporates the other arts. Resonating with Bazin and his defence of ‘impure cinema’, that is, of cinema’s interbreeding with other arts, Badiou seems to agree with him also in identifying the uncinematic as the location of the Real. This article will investigate the particular impurities of cinema that drive it beyond the specificities of the medium and into the realm of the other arts and the reality of life itself. Privileged examples will be drawn from various moments in film history and geography, starting with the analysis of two films by Jafar Panahi: This Is Not a Film (In film nist, 2011), whose anti-cinema stance in announced in its own title; and The Mirror (Aineh, 1997), another relentless exercise in self-negation. It goes on to examine Kenji Mizoguchi’s deconstruction of cinematic acting in his exploration of the geidomono genre (films about theatre actors) in The Story of the Last Chrysanthemums (Zangigku monogatari, 1939), and culminates in the conjuring of the physical experience of death through the systematic demolition of film genres in The Act of Killing (Joshua Oppenheimer et al., 2012).