999 resultados para nitrogen fertilization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seeds with a high concentration of P or Mo can improve the growth and N accumulation of the common bean (Phaseolus vulgaris L.), but the effect of enriched seeds on biological N2 fixation has not been established yet. This study aimed to evaluate the effect of seeds enriched with P and Mo on growth and biological N2 fixation of the common bean by the 15N isotope dilution technique. An experiment was carried out in pots in a 2 x 3 x 2 x 2 factorial design in randomized blocks with four replications, comprising two levels of soil applied P (0 and 80 mg kg-1), three N sources (without N, inoculated with rhizobia, and mineral N), two seed P concentrations (low and high), and two seed Mo concentrations (low and high). Non-nodulating bean and sorghum were used as non-fixing crops. The substrate was 5.0 kg of a Red Latosol (Oxisol) previously enriched with 15N and mixed with 5.0 kg of sand. Plants were harvested 41 days after emergence. Seeds with high P concentration increased the growth and N in shoots, particularly in inoculated plants at lower applied P levels. Inoculated plants raised from high P seeds showed improved nodulation at both soil P levels. Higher soil P levels increased the percentage of N derived from the atmosphere (%Ndfa) in bean leaves. Inoculation with the selected strains increased the %Ndfa. High seed P increased the %Ndfa in inoculated plants at lower soil P levels. High seed Mo increased the %Ndfa at lower soil P levels in plants that did not receive inoculation or mineral N. It is concluded that high seed P concentration increases the growth, N accumulation and the contribution of the biological N2 fixation in the common bean, particularly in inoculated plants grown at lower soil P availability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The eutrophication of aquifers is strongly linked to the mobility of P in soils. Although P mobility was considered irrelevant in a more distant past, more recent studies have shown that P, both in organic (Po) and inorganic forms (Pi), can be lost by leaching and eluviation through the soil profile, particularly in less weathered and/or sandier soils with low P adsorption capacity. The purpose of this study was to determine losses of P forms by leaching and eluviation from soil columns. Each column consisted of five PVC rings (diameter 5 cm, height 10 cm), filled with two soil types: a clayey Red-Yellow Latosol and a sandy loam Red-Yellow Latosol, which were exposed to water percolation. The soils were previously treated with four P rates (as KH2PO4 ) to reach 0, 12.5, 25.0 and 50 % of the maximum P adsorption capacity (MPAC). The P source was homogenized with the whole soil volume and incubated for 60 days. After this period the soils were placed in the columns; the soil of the top ring was mixed with five poultry litter rates of 0, 20, 40, 80, and 160 t ha-1 (dry weight basis). Treatments consisted of a 4 x 5 x 2 factorial scheme corresponding to four MPAC levels, five poultry litter rates, two soils, with three replications, arranged in a completely randomized block design. Deionized water was percolated through the columns 10 times in 35 days to simulate about 1,200 mm rainfall. In the leachate of each column the inorganic P (reactive P, Pi) and organic P forms (unreactive P, Po) were determined. At the end of the experiment, the columns were disassembled and P was extracted with the extractants Mehlich-1 (HCl 0.05 mol L-1 and H2SO4 0.0125 mol L-1) and Olsen (NaHCO3 0.5 mol L-1; pH 8.5) from the soil of each ring. The Pi and Po fractions were measured by the Olsen extractant. It was found that under higher poultry litter rates the losses of unreactive P (Po) were 6.4 times higher than of reactive P (Pi). Both the previous P fertilization and increasing poultry litter rates caused a vertical movement of P down the soil columns, as verified by P concentrations extracted by Mehlich-1 and NaHCO3 (Olsen). The environmental critical level (ECL), i.e., the P soil concentration above which P leaching increases exponentially, was 100 and 150 mg dm-3 by Mehlich-1 and 40 and 60 mg dm-3 by Olsen, for the sandy loam and clay soils, respectively. In highly weathered soils, where residual P is accumulated by successive crops, P leaching through the profile can be significant, particularly when poultry litter is applied as fertilizer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are great concerns about degradation of agricultural soils. It has been suggested that cultivating different plant species intercropped with coffee plants can increase microbial diversity and enhance soil sustainability. The objective of this study was to evaluate enzyme activity (urease, arylsulfatase and phosphatase) and alterations in C and N mineralization rates as related to different legume cover crops planted between rows of coffee plants. Soil samples were collected in a field experiment conducted for 10 years in a sandy soil in the North of Paraná State, Brazil. Samples were collected from the 0-10 cm layer, both from under the tree canopy and in-between rows in the following treatments: control, Leucaena leucocephala, Crotalaria spectabilis, Crotalaria breviflora, Mucuna pruriens, Mucuna deeringiana, Arachis hypogaea and Vigna unguiculata. The soil was sampled in four stages of legume cover crops: pre-planting (September), after planting (November), flowering stage (February) and after plant residue incorporation (April), from 1997 to 1999. The green manure species influenced soil enzyme activity (urease, arylsulfatase and phosphatase) and C and N mineralization rates, both under the tree canopy and in-between rows. Cultivation of Leucaena leucocephala increased acid phosphatase and arilsulfatase activity and C and N mineralization both under the tree canopy and in-between rows. Intercropped L. leucocephala increased urease activity under the tree canopy while C. breviflora increased urease activity in-between rows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adequate nutrient levels in plants vary according to the species or clone, age and management practice. Therefore, adjustments of the nutrient solution are often necessary according to the plant material for multiplication. This study aimed to evaluate the influence of NPK fertilization on production and leaf nutrient contents of eucalyptus cuttings in nutrient solution. The study was conducted from November 2008 to January 2009 in a greenhouse. The experimental design was completely randomized fractional factorial (4 x 4 x 4)½, with a total of 32 treatments with three replications. The treatments consisted of four doses of N (50, 100, 200 and 400 mg L-1) as urea, P (7.5, 15, 30 and 60 mg L-1) in the form of phosphoric acid and K (50, 100, 200 and 400 mg L-1) in the form of potassium chloride in the nutrient solution. Only the effect of N alone was significant for the number and dry weight of minicuttings per ministump, with a linear decreasing effect with increasing N levels. The highest number of cuttings was obtained at a dose of 50, 7.5 and 50 mg L-1 of N, P and K, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Balanced fertilization is important for plant growth. There is little information on physic nut (Jatropha curcas L.) and tests with the fertilization of the species are very recent. This study evaluated the initial growth of physic nut seedlings in response to NPK rates to Quartzarenic Neossol in a greenhouse and estimated P and K critical soil levels and N, P and K in shoot dry matter after 120 days of evaluation. The treatments were arranged in a randomized, fractional factorial design (4 x 4 x 4)½, totalizing 32 treatments with three replicates, 96 experimental plots and N rates (0, 75, 150 and 300 mg dm-3) as urea; P rates (0, 45, 90 and 180 mg dm-3) as triple superphosphate and K rates (0, 50, 100 and 200 mg dm-3) as potassium chloride. After 120 days, the plants were harvested and some variables evaluated: plant height, stem diameter, shoot and root dry weight, macro and micronutrient levels in plant shoots, and soil chemical properties. The physic nut seedlings responded to NPK fertilizer in the initial growth phase; the response to N was negative. The recommended P and K rates were 25 and 67 mg dm-3, respectively. The critical levels, corresponding to the recommended P rate were 13 and 74 mg dm-3 for K in soil (Mehlich-1). The N, P and K levels in the shoot dry matter of physic nut were 37.4, 2.1 and 35.7 g kg-1, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The process of biological nitrogen fixation (BNF), performed by symbiotic nitrogen fixing bacteria with legume species, commonly known as α and β rhizobia, provides high sustainability for the ecosystems. Its management as a biotechnology is well succeeded for improving crop yields. A remarkable example of this success is the inoculation of Brazilian soybeans with Bradyrhizobium strains. Rhizobia produce a wide diversity of chemical structures of exopolysaccharides (EPS). Although the role of EPS is relatively well studied in the process of BNF, their economic and environmental potential is not yet explored. These EPS are mostly species-specific heteropolysaccharides, which can vary according to the composition of sugars, their linkages in a single subunit, the repeating unit size and the degree of polymerization. Studies have showed that the EPS produced by rhizobia play an important role in the invasion process, infection threads formation, bacteroid and nodule development and plant defense response. These EPS also confer protection to these bacteria when exposed to environmental stresses. In general, strains of rhizobia that produce greater amounts of EPS are more tolerant to adverse conditions when compared with strains that produce less. Moreover, it is known that the EPS produced by microorganisms are widely used in various industrial activities. These compounds, also called biopolymers, provide a valid alternative for the commonly used in food industry through the development of products with identical properties or with better rheological characteristics, which can be used for new applications. The microbial EPS are also able to increase the adhesion of soil particles favoring the mechanical stability of aggregates, increasing levels of water retention and air flows in this environment. Due to the importance of EPS, in this review we discuss the role of these compounds in the process of BNF, in the adaptation of rhizobia to environmental stresses and in the process of soil aggregation. The possible applications of these biopolymers in industry are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of machinery in agricultural and forest management activities frequently increases soil compaction, resulting in greater soil density and microporosity, which in turn reduces hydraulic conductivity and O2 and CO2 diffusion rates, among other negative effects. Thus, soil compaction has the potential to affect soil microbial activity and the processes involved in organic matter decomposition and nutrient cycling. This study was carried out under controlled conditions to evaluate the effect of soil compaction on microbial activity and carbon (C) and nitrogen (N) mineralization. Two Oxisols with different mineralogy were utilized: a clayey oxidic-gibbsitic Typic Acrustox and a clayey kaolinitic Xantic Haplustox (Latossolo Vermelho-Amarelo ácrico - LVA, and Latossolo Amarelo distrófico - LA, respectively, in the Brazil Soil Classification System). Eight treatments (compaction levels) were assessed for each soil type in a complete block design, with six repetitions. The experimental unit consisted of PVC rings (height 6 cm, internal diameter 4.55 cm, volume 97.6 cm³). The PVC rings were filled with enough soil mass to reach a final density of 1.05 and 1.10 kg dm-3, respectively, in the LVA and LA. Then the soil samples were wetted (0.20 kg kg-1 = 80 % of field capacity) and compacted by a hydraulic press at pressures of 0, 60, 120, 240, 360, 540, 720 and 900 kPa. After soil compression the new bulk density was calculated according to the new volume occupied by the soil. Subsequently each PVC ring was placed within a 1 L plastic pot which was then tightly closed. The soils were incubated under aerobic conditions for 35 days and the basal respiration rate (CO2-C production) was estimated in the last two weeks. After the incubation period, the following soil chemical and microbiological properties were detremined: soil microbial biomass C (C MIC), total soil organic C (TOC), total N, and mineral N (NH4+-N and NO3--N). After that, mineral N, organic N and the rate of net N mineralization was calculated. Soil compaction increased NH4+-N and net N mineralization in both, LVA and LA, and NO3--N in the LVA; diminished the rate of TOC loss in both soils and the concentration of NO3--N in the LA and CO2-C in the LVA. It also decreased the C MIC at higher compaction levels in the LA. Thus, soil compaction decreases the TOC turnover probably due to increased physical protection of soil organic matter and lower aerobic microbial activity. Therefore, it is possible to conclude that under controlled conditions, the oxidic-gibbsitic Oxisol (LVA) was more susceptible to the effects of high compaction than the kaolinitic (LA) as far as organic matter cycling is concerned; and compaction pressures above 540 kPa reduced the total and organic nitrogen in the kaolinitic soil (LA), which was attributed to gaseous N losses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In agricultural systems the N-NH4+ and N-NO3- contents is significantly affected by soil management. This study investigated the dynamics of inorganic nitrogen (N; NH4+ and NO3-) in an experimental evaluation of soil management systems (SMSs) adopted in 1988 at the experimental station of the ABC Foundation in Ponta Grossa, in the Central South region of the State of Paraná. The objective of this study was to evaluate the changes in N-NH4+ and N-NO3- flux in the surface layer of a Red Latosol arising from SMSs over a 12-month period. The experiment was arranged in a completely randomized block design in split plots, in three replications. The plots consisted of the following SMSs: 1) conventional tillage (CT); 2) minimum tillage (MT); 3) no-tillage with chisel plow every three years (NT CH); and 4) continuous no-tillage (CNT). To evaluate the dynamics of inorganic N, the subplots represented samplings (11 sampling times, T1 - T11). The ammonium N (N-NH4+) and nitric N (N-NO3-) contents were higher in systems with reduced tillage (MT and NT CH) and without tillage (CNT) than in the CT system. In the period from October 2003 to February 2004, the N-NH4+ was higher than the N-NO3- soil content. Conversely, in the period from May 2004 to July 2004, the N-NO3- was higher than the N-NH4+ content. The greatest fluctuation in the N-NH4+ and N-NO3- contents occurred in the 0-2.5 cm layer, and the highest peak in the N-NH4+ and N-NO3- concentrations occurred after the surface application of N. Both N-NH4+ and N-NO3- were strongly correlated with the soil organic C content, which indicated that these properties vary together in the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogen is the main limiting factor in crop productivity and thereby soil management systems may change the mineralization and nitrification rates. In an experiment on soil management systems implemented in 1988 at the experimental station Fundação ABC, Ponta Grossa, in the central South region of the State of Paraná, inorganic N dynamics were examined to find a soil management strategy with a view to a sustainable environment. The objective of this study was to calculate the net mineralization and nitrification rates of soil N and the correlation with soil pH under management systems. Randomized complete block design was used, in split plots, in three replications. The following soil management systems (SMSs) were adopted in the plots: 1) conventional tillage (CT); 2) minimum tillage (MT); 3) no-tillage with chisel plow every three years (NT CH); and 4) continuous no-tillage (CNT). To evaluate the dynamics of inorganic N, samples were collected from sub-plots at different times (11 sampling times - T1 to T11). In the CNT and NT CH, the net mineralization rates were higher in the MT and CT systems in the 0-2.5 cm soil layer, while the nitrification rate was higher in the 2.5-5 cm layer. Soon after implementing the white oat management, the mineralization and nitrification rates in all soil layers were higher in the MT and CT systems. In the period of soybean development, in the 0-2.5 and 2.5-5 cm soil layers, the mineralization and nitrification rates were higher in the CNT and NT CH than in the MT and CT systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrification can lead to substantial losses of the applied N through nitrate leaching and N2O emission. The regulation of nitrification may be a strategy to improve fertilizer N recovery and increase its agronomic efficiency. The objective of this study was to evaluate the inhibiting capacity of nitrification in soil by Brachiaria species. The greenhouse experiment was conducted using pots with 10 dm³ of a Red Latosol sample. The treatments consisted of the cultivation of three forage species (Brachiaria brizantha, B. ruziziensis and B. decumbens) and four n rates (0, 100, 200, and 300 mg/pot), and the control (without plants). In the absence of the forage plants, all N fertilization levels raised the N-NO3- soil levels, as a result of nitrification. The mineralization of organic matter supplied much of the N requirement of the forage plants and nitrification was influenced in the rhizosphere of B. brizantha; however, this effect was not high enough to alter the N-NH4+ level in the total soil volume of the pot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tannery wastes generation is increasing every year and a suitable method for tannery sludge management is necessary in order to decrease this environmental problem. The composting is recognized as a suitable method for sludge recycling.. The effect of tannery sludge compost (TSC) rates on growth, nodulation and N fixation of cowpea was investigated. Sandy and clayey soils were amended with TSC at rates of 0, 7.5, 15, 30, and 60 t ha-1. The shoot dry weight of cowpea plants 45 days after emergence (DAE) was greater in the TSC-amended than in the unamended soil. In the sandy soil, nodule dry weight increased with TSC application 45 DAE. In the clayey soil, 45 DAE, nodule dry weight decreased with TSC amendment levels greater than 7.5 t ha-1 compared to the unamended control. The application of TSC increased N accumulation in the cowpea plants. The results suggest that cowpea responds differently to TSC depending on the amendment rate and initial soil type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the expected benefits of no-tillage systems is a higher rate of soil C sequestration. However, higher C retention in soil is not always apparent when no-tillage is applied, due e.g., to substantial differences in soil type and initial C content. The main purpose of this study was to evaluate the potential of no-tillage management to increase the stock of total organic C in soils of the Pampas region in Argentina. Forty crop fields under no-tillage and conventional tillage systems and seven undisturbed soils were sampled. Total organic C, total N, their fractions and stratification ratios and the C storage capacity of the soils under different managements were assessed in samples to a depth of 30 cm, in three layers (0-5, 5-15 and 15-30 cm). The differences between the C pools of the undisturbed and cultivated soils were significant (p < 0.05) and most pronounced in the top (0-5 cm) soil layer, with more active C near the soil surface (undisturbed > no-tillage > conventional tillage). Based on the stratification ratio of the labile C pool (0-5/5-15 cm), the untilled were separated from conventionally tilled areas. Much of the variation in potentially mineralizable C was explained by this active C fraction (R² = 0.61) and by total organic C (R² = 0.67). No-till soils did not accumulate more organic C than conventionally tilled soils in the 0-30 cm layer, but there was substantial stratification of total and active C pools at no till sites. If the C stratification ratio is really an indicator of soil quality, then the C storage potential of no-tillage would be greater than in conventional tillage, at least in the surface layers. Particulate organic C and potentially mineralizable C may be useful to evaluate variations in topsoil organic matter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of organic-mineral fertilizer produced by the manufacturing industry of lysine and threonine amino acids can improve the fertility of tropical soils. The objective of this study was to evaluate the influence of different doses of the organic-mineral fertilizer named Ajifer L-14 on chemical properties and on the response with increased production of a forage on a Red Latosol in the northwestern region of São Paulo State, Brazil. A randomized block design was used with seven treatments and four replications. The treatments consisted of: T1- control (without application of Ajifer L-14); T2- control (natural vegetation); T3- mineral fertilization according to crop requirements and soil analysis (application of 1.35 kg plot-1 of urea, 2.20 single superphosphate, and 0.51 KCl, corresponding to 60 of N, 40 P2O5 and 30 kg ha-1 of K2O); T4- fertilization with Ajifer L-14 according to the recommendation resulting from the soil chemical analysis (40 L plot-1, corresponding to 60 kg ha-1 N); T5- fertilization with Ajifer L-14, at a rate of 150 % of the recommended values (60 L plot-1, corresponding to 90 kg ha-1 N); T6- fertilization with Ajifer L-14 at a rate of 50 % of the recommended values (20 L plot-1, corresponding to 30 kg ha-1 N); T7- fertilization with Ajifer L-14 at a rate of 125 % of the recommended values (50 L plot-1, corresponding to 75 kg ha-1 N); T8- fertilization with Ajifer L-14 at a rate of 75 % of the recommended values (30 L plot-1, corresponding to 45 kg ha-1 N). The following soil chemical properties were evaluated (layers 0.0-0.1 and 0.1-0.2 m): P, organic matter, pH, K+, Ca2+, Mg2+, cation exchange capacity, potential acidity, and base saturation. The application of this organic-mineral fertilizer does not influence the soil chemical properties. Regression analysis indicated a polynomial relationship between the application rates of organic-mineral fertilizer and the production of dry matter and crude protein of Bracharia Brizantha.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, physic nut (Jatropha curcas L.) has attracted attention because of its potential for biofuel production. Although it is adapted to low-fertility soils, physic nut requires soil acidity corrections and addition of a considerable amount of fertilizer for high productivity. The objective of this research was to evaluate the effectiveness of arbuscular mycorrhizal fungi (AMF) (control without AMF inoculation, Gigaspora margarita inoculation or Glomus clarum inoculation) on increasing growth and yield of physic nut seedlings under different rates of P fertilization (0, 25, 50, 100, 200, and 400 mg kg-1 P soil) in greenhouse. The experiment was arranged in a completely randomized, block in a factorial scheme design with four replications. The physic nut plants were harvested 180 days after the beginning of the experiment. Mycorrhizal inoculation increased physic nut growth, plant P concentration and root P uptake efficiency at low soil P concentrations. The P use quotient of the plants decreased as the amount of P applied increased, and the P use efficiency index increased at low P levels and decreased at high P levels. Mycorrhizal root colonization and AMF sporulation were negatively affected by P addition. The highest mycorrhizal efficiency was observed when the soil contained between 7.8 and 25 mgkg-1 of P. The physic nut plants responded strongly to P application, independent of mycorrhizal inoculation.