829 resultados para network model
Resumo:
This paper presents a social simulation in which we add an additional layer of mass media communication to the social network 'bounded confidence' model of Deffuant et al (2000). A population of agents on a lattice with continuous opinions and bounded confidence adjust their opinions on the basis of binary social network interactions between neighbours or communication with a fixed opinion. There are two mechanisms for interaction. 'Social interaction' occurs between neighbours on a lattice and 'mass communication' adjusts opinions based on an agent interacting with a fixed opinion. Two new variables are added, polarisation: the degree to which two mass media opinions differ, and broadcast ratio: the number of social interactions for each mass media communication. Four dynamical regimes are observed, fragmented, double extreme convergence, a state of persistent opinion exchange leading to single extreme convergence and a disordered state. Double extreme convergence is found where agents are less willing to change opinion and mass media communications are common or where there is moderate willingness to change opinion and a high frequency of mass media communications. Single extreme convergence is found where there is moderate willingness to change opinion and a lower frequency of mass media communication. A period of persistent opinion exchange precedes single extreme convergence, it is characterized by the formation of two opposing groups of opinion separated by a gradient of opinion exchange. With even very low frequencies of mass media communications this results in a move to central opinions followed by a global drift to one extreme as one of the opposing groups of opinion dominates. A similar pattern of findings is observed for Neumann and Moore neighbourhoods.
Resumo:
This paper presents the trajectory control of a 2DOF mini electro-hydraulic excavator by using fuzzy self tuning with neural network algorithm. First, the mathematical model is derived for the 2DOF mini electro-hydraulic excavator. The fuzzy PID and fuzzy self tuning with neural network are designed for circle trajectory following. Its two links are driven by an electric motor controlled pump system. The experimental results demonstrated that the proposed controllers have better control performance than the conventional controller.
Resumo:
Increasingly infrastructure providers are supplying the cloud marketplace with storage and on-demand compute resources to host cloud applications. From an application user's point of view, it is desirable to identify the most appropriate set of available resources on which to execute an application. Resource choice can be complex and may involve comparing available hardware specifications, operating systems, value-added services, such as network configuration or data replication, and operating costs, such as hosting cost and data throughput. Providers' cost models often change and new commodity cost models, such as spot pricing, have been introduced to offer significant savings. In this paper, a software abstraction layer is used to discover infrastructure resources for a particular application, across multiple providers, by using a two-phase constraints-based approach. In the first phase, a set of possible infrastructure resources are identified for a given application. In the second phase, a heuristic is used to select the most appropriate resources from the initial set. For some applications a cost-based heuristic is most appropriate; for others a performance-based heuristic may be used. A financial services application and a high performance computing application are used to illustrate the execution of the proposed resource discovery mechanism. The experimental result shows the proposed model could dynamically select an appropriate set of resouces that match the application's requirements.
Resumo:
To optimize the performance of wireless networks, one needs to consider the impact of key factors such as interference from hidden nodes, the capture effect, the network density and network conditions (saturated versus non-saturated). In this research, our goal is to quantify the impact of these factors and to propose effective mechanisms and algorithms for throughput guarantees in multi-hop wireless networks. For this purpose, we have developed a model that takes into account all these key factors, based on which an admission control algorithm and an end-to-end available bandwidth estimation algorithm are proposed. Given the necessary network information and traffic demands as inputs, these algorithms are able to provide predictive control via an iterative approach. Evaluations using analytical comparison with simulations as well as existing research show that the proposed model and algorithms are accurate and effective.
Resumo:
Besides making contact with an approaching ball at the proper place and time, hitting requires control of the effector velocity at contact. A dynamical neural network for the planning of hitting movements was derived in order to account for both these requirements. The model in question implements continuous required velocity control by extending the Vector Integration To Endpoint model while providing explicit control of effector velocity at interception. It was shown that the planned movement trajectories generated by the model agreed qualitatively with the kinematics of hitting movements as observed in two recent experiments. Outstanding features of this comparison concerned the timing and amplitude of the empirical backswing movements, which were largely consistent with the predictions from the model. Several theoretical implications as well as the informational basis and possible neural underpinnings of the model were discussed.
Resumo:
Two prospective controllers of hand movements in catching-both based on required velocity control-were simulated. Under certain conditions, this required velocity control led to overshoots of the future interception point. These overshoots were absent in pertinent experiments. To remedy this shortcoming, the required velocity model was reformulated in terms of a neural network, the Vector Integration To Endpoint model, to create a Required Velocity Integration To Endpoint model. Addition of a parallel relative velocity channel, resulting in the Relative and Required Velocity Integration To Endpoint model, provided a better account for the experimentally observed kinematics than the existing, purely behavioral models. Simulations of reaching to intercept decelerating and accelerating objects in the presence of background motion were performed to make distinct predictions for future experiments.
Resumo:
In a multiagent system where norms are used to regulate the actions agents ought to execute, some agents may decide not to abide by the norms if this can benefit them. Norm enforcement mechanisms are designed to counteract these benefits and thus the motives for not abiding by the norms. In this work we propose a distributed mechanism through which agents in the multiagent system that do not abide by the norms can be ostracised by their peers. An ostracised agent cannot interact anymore and looses all benefits from future interactions. We describe a model for multiagent systems structured as networks of agents, and a behavioural model for the agents in such systems. Furthermore, we provide analytical results which show that there exists an upper bound to the number of potential norm violations when all the agents exhibit certain behaviours. We also provide experimental results showing that both stricter enforcement behaviours and larger percentage of agents exhibiting these behaviours reduce the number of norm violations, and that the network topology influences the number of norm violations. These experiments have been executed under varying scenarios with different values for the number of agents, percentage of enforcers, percentage of violators, network topology, and agent behaviours. Finally, we give examples of applications where the enforcement techniques we provide could be used.
Resumo:
This paper describes a data model for content representation of temporal media in an IP based sensor network. The model is formed by introducing the idea of semantic-role from linguistics into the underlying concepts of formal event representation with the aim of developing a common event model. The architecture of a prototype system for a multi camera surveillance system, based on the proposed model is described. The important aspects of the proposed model are its expressiveness, its ability to model content of temporal media, and its suitability for use with a natural language interface. It also provides a platform for temporal information fusion, as well as organizing sensor annotations by help of ontologies.
Resumo:
Introduction: Amplicon deep-sequencing using second-generation sequencing technology is an innovative molecular diagnostic technique and enables a highly-sensitive detection of mutations. As an international consortium we had investigated previously the robustness, precision, and reproducibility of 454 amplicon next-generation sequencing (NGS) across 10 laboratories from 8 countries (Leukemia, 2011;25:1840-8).
Aims: In Phase II of the study, we established distinct working groups for various hematological malignancies, i.e. acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), chronic myelogenous leukemia (CML), myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), and multiple myeloma. Currently, 27 laboratories from 13 countries are part of this research consortium. In total, 74 gene targets were selected by the working groups and amplicons were developed for a NGS deep-sequencing assay (454 Life Sciences, Branford, CT). A data analysis pipeline was developed to standardize mutation interpretation both for accessing raw data (Roche Amplicon Variant Analyzer, 454 Life Sciences) and variant interpretation (Sequence Pilot, JSI Medical Systems, Kippenheim, Germany).
Results: We will report on the design, standardization, quality control aspects, landscape of mutations, as well as the prognostic and predictive utility of this assay in a cohort of 8,867 cases. Overall, 1,146 primer sequences were designed and tested. In detail, for example in AML, 924 cases had been screened for CEBPA mutations. RUNX1 mutations were analyzed in 1,888 cases applying the deep-sequencing read counts to study the stability of such mutations at relapse and their utility as a biomarker to detect residual disease. Analyses of DNMT3A (n=1,041) were focused to perform landscape investigations and to address the prognostic relevance. Additionally, this working group is focusing on TET2, ASXL1, and TP53 analyses. A novel prognostic model is being developed allowing stratification of AML into prognostic subgroups based on molecular markers only. In ALL, 1,124 pediatric and adult cases have been screened, including 763 assays for TP53 mutations both at diagnosis and relapse of ALL. Pediatric and adult leukemia expert labs developed additional content to study the mutation incidence of other B and T lineage markers such as IKZF1, JAK2, IL7R, PAX5, EP300, LEF1, CRLF2, PHF6, WT1, JAK1, PTEN, AKT1, IL7R, NOTCH1, CREBBP, or FBXW7. Further, the molecular landscape of CLL is changing rapidly. As such, a separate working group focused on analyses including NOTCH1, SF3B1, MYD88, XPO1, FBXW7 and BIRC3. Currently, 922 cases were screened to investigate the range of mutational burden of NOTCH1 mutations for their prognostic relevance. In MDS, RUNX1 mutation analyses were performed in 977 cases. The prognostic relevance of TP53 mutations in MDS was assessed in additional 327 cases, including isolated deletions of chromosome 5q. Next, content was developed targeting genes of the cellular splicing component, e.g. SF3B1, SRSF2, U2AF1, and ZRSR2. In BCR-ABL1-negative MPN, nine genes of interest (JAK2, MPL, TET2, CBL, KRAS, EZH2, IDH1, IDH2, ASXL1) have been analyzed in a cohort of 155 primary myelofibrosis cases searching for novel somatic mutations and addressing their relevance for disease progression and leukemia transformation. Moreover, an assay was developed and applied to CMML cases allowing the simultaneous analysis of 25 leukemia-associated target genes in a single sequencing run using just 20 ng of starting DNA. Finally, nine laboratories are studying CML, applying ultra-deep sequencing of the BCR-ABL1 tyrosine kinase domain. Analyses were performed on 615 cases investigating the dynamics of expansion of mutated clones under various tyrosine kinase inhibitor therapies.
Conclusion: Molecular characterization of hematological malignancies today requires high diagnostic sensitivity and specificity. As part of the IRON-II study, a network of laboratories analyzed a variety of disease entities applying amplicon-based NGS assays. Importantly, the consortium not only standardized assay design for disease-specific panels, but also achieved consensus on a common data analysis pipeline for mutation interpretation. Distinct working groups have been forged to address scientific tasks and in total 8,867 cases had been analyzed thus far.
Resumo:
This paper addresses the problem of optimally locating intermodal freight terminals in Serbia. To solve this problem and determine the effects of the resulting scenarios, two modeling approaches were combined. The first approach is based on multiple-assignment hub-network design, and the second is based on simulation. The multiple-assignment p-hub network location model was used to determine the optimal location of intermodal terminals. Simulation was used as a tool to estimate intermodal transport flow volumes, due to the unreliability and unavailability of specific statistical data, and as a method for quantitatively analyzing the economic, time, and environmental effects of different scenarios of intermodal terminal development. The results presented here represent a summary, with some extension, of the research realized in the IMOD-X project (Intermodal Solutions for Competitive Transport in Serbia).
Resumo:
This paper contributes to and expands on the Nakagami-m phase model. It derives exact, closed-form expressions for both the phase cumulative distribution function and its inverse. In addition, empirical first- and second-order statistics obtained from measurements conducted in a body-area network scenario were used to fit the phase probability density function, the phase cumulative distribution function, and the phase crossing rate expressions. Remarkably, the unlikely shapes of the phase statistics, as predicted by the theoretical formulations, are actually encountered in practice.
Resumo:
Variations in the phase angle difference between a remote 11kV connected wind farm and the centre of Belfast during a typical working day are investigated in the paper. The results obtained using phasor measurement units (PMUs) are compared with the data generated using a PSS/E simulator configured to model the N.Ireland network. The study investigates the effect of changes in the load demand and the wind farm output power on the phase angles at various locations on the network. The paper finally describes how a major system disturbance on the All-Ireland network was monitored and analysed using PMUs located at Queen's University, Belfast and University College Dublin. ©2007 IEEE.
Resumo:
A hydrolyzable model network comprising interconnected star polymers was prepared by the sequential group transfer polymerization of methyl methacrylate and the acid-labile diacetal-based dimethacrylate crosslinker bis[(2-methacryloyloxy)ethoxymethyl] ether. in contrast to other polymer networks previously synthesized by our group, all the branching points of this polymer network were found to hydrolyze under mildly acidic conditions, giving a linear copolymer with the theoretically expected molecular weight and composition. The ease of hydrolysis of this polymer network renders it a good candidate for use in the biomedical field. The characterization of the synthesized network, its linear and star polymer precursors and the hydrolysis products of the network and its precursors, by a variety of techniques, established the successful synthesis and hydrolysis of this well-defined polymer nanostructure.
Resumo:
Group transfer polymerization (GTP) chemistry was employed for the preparation of polymethacrylate networks of controlled structure (quasi-model networks) of three different types: (a) regular quasi-model networks, in which all polymer chains were linked at their ends, leaving, in principle, no free chain ends, (b) crosslinked star polymer quasi-model networks, in which star polymers were interlinked via half of their chains, letting the other half free (dangling), and (c) shell-crosslinked polymer quasi-model networks, in which the outer part of the network contained polymer arms (dangling chains). Combination of hydrophilic and hydrophobic monomers led to amphiphilic networks whose aqueous swelling behavior was characterized gravimetrically.
Resumo:
A hydrolyzable dimethacrylate cross-linker, 2-methyl-2,4-pentanediol dimethacrylate (MPDMA), was synhesized by the reaction of 2-methyl-2,4-pentanediol and methacryloyl chloride in the presence of triethylamine. This cross-linker was used to prepare a neat cross-linker network and three cross-linked star polymer model networks (CSPMNs) of methyl methacrylate (MMA), as well as star-shaped polymers of MMA, by group transfer polymerization (GTP). Gel permeation chromatography (GPC) in tetrahydrofuran (THF) confirmed the narrow molecular weight distributions (MWDs) of the linear polymer precursors, and demonstrated the increase in molecular weight (MW) on each successive addition of cross-linker or monomer. Characterization of the star polymers by static light scattering (SLS) in THF showed that star polymers with MPDMA cores bear a relatively small number of arms, between 7 and 35. All star polymers and polymer networks containing the MPDMA cross-linker were hydrolyzed at room temperature in neat trifluoroacetic acid to yield lower-MW products.