883 resultados para national space in Quebec
Resumo:
We show that interpreting the inverse AdS(3) radius 1/l as a Grassmann variable results in a formal map from gravity in AdS(3) to gravity in flat space. The underlying reason for this is the fact that ISO(2, 1) is the Inonu-Wigner contraction of SO(2, 2). We show how this works for the Chern-Simons actions, demonstrate how the general (Banados) solution in AdS(3) maps to the general flat space solution, and how the Killing vectors, charges and the Virasoro algebra in the Brown-Henneaux case map to the corresponding quantities in the BMS3 case. Our results straightforwardly generalize to the higher spin case: the recently constructed flat space higher spin theories emerge automatically in this approach from their AdS counterparts. We conclude with a discussion of singularity resolution in the BMS gauge as an application.
Resumo:
In this article, we study risk-sensitive control problem with controlled continuous time Markov chain state dynamics. Using multiplicative dynamic programming principle along with the atomic structure of the state dynamics, we prove the existence and a characterization of optimal risk-sensitive control under geometric ergodicity of the state dynamics along with a smallness condition on the running cost.
Resumo:
Biomolecular recognition underlying drug-target interactions is determined by both binding affinity and specificity. Whilst, quantification of binding efficacy is possible, determining specificity remains a challenge, as it requires affinity data for multiple targets with the same ligand dataset. Thus, understanding the interaction space by mapping the target space to model its complementary chemical space through computational techniques are desirable. In this study, active site architecture of FabD drug target in two apicomplexan parasites viz. Plasmodium falciparum (PfFabD) and Toxoplasma gondii (TgFabD) is explored, followed by consensus docking calculations and identification of fifteen best hit compounds, most of which are found to be derivatives of natural products. Subsequently, machine learning techniques were applied on molecular descriptors of six FabD homologs and sixty ligands to induce distinct multivariate partial-least square models. The biological space of FabD mapped by the various chemical entities explain their interaction space in general. It also highlights the selective variations in FabD of apicomplexan parasites with that of the host. Furthermore, chemometric models revealed the principal chemical scaffolds in PfFabD and TgFabD as pyrrolidines and imidazoles, respectively, which render target specificity and improve binding affinity in combination with other functional descriptors conducive for the design and optimization of the leads.
Resumo:
Marine protected areas (MPAs) are being promoted around the world as an effective means of protecting marine and coastal resources and biodiversity. However, concerns have been raised about their impact on the livelihoods, culture and survival of small-scale and traditional fishing and coastal communities. Yet, as this study from Brazil shows, it is possible to use MPAs as a tool for livelihood-sensitive conservation. Based on detailed studies of three sites–the Peixe Lagoon National Park in Rio Grande do Sul, and the marine extractive reserves (MERs) of Mandira, São Paulo, and Corumbau, Bahia – the study shows how communities in Brazil have been able to use protected areas to safeguard their livelihoods against development and industrialization projects, like shrimp farms and tourist resorts. (68 pp.)
Resumo:
Since 1991, the certification, release and maintenance of new species for aquaculture have become part of the national policy in China. During the past 15 years, this policy has been conducted and improved and has begun to show its significant role in Chinese fisheries. This paper describes the updated system of certification, release and maintenance of new species for aquaculture in China.
Resumo:
Tilapia once termed "poor man's" fish, still remains as the highly-priced food fish in many developing countries. The good attributes of this fish prompt its use in intensive aquaculture vertically integrated systems (VIS) which embrace broodstock development, hatchery/nursery and growout phase. Based on the series of studies carried out at Kainji Lake Research Institute, in New Bussa, Nigeria using Oreochromis (Tilapia niloticus) in floating bamboo hapas/cages, the recommended intensive modular systems were estimated to be capable of producing 4 million Tilapia fingerlings and 729 tons fish (Market-size) annually. Cost-benefit analysis showed the venture to have high prospects. It is recommended that priority be given to Tilapia cage culture at the national level in order to contribute immensely towards increased fish production
Resumo:
[EN] Atemschaukel approaches the falling apart and survival in a historically loaded space, such as a labour camp. This novel offers a relevant research field for the space analysis, focused from the perspective of the Spatial Turn, as not only this theoretical frame but also Herta Müller herself conceive of space as a process, unterstood as a reciprocal interaction with the social practice, thus as a spatial and social construct. The representation of space in Atemschaukel is described in this article as a “swinging movement between boxes and abyss”, where the discourse of Leopold Auberg’s memories oscillates between closed and square spaces, on one hand, and open and giddy spaces, on the other hand. In this oscillating movement it is the open spaces that will most clearly show the process of inner destruction of the subject in such oppressive situations as on labour camps, as well as the permanent damages of deportation.
Resumo:
The dynamic properties of a structure are a function of its physical properties, and changes in the physical properties of the structure, including the introduction of structural damage, can cause changes in its dynamic behavior. Structural health monitoring (SHM) and damage detection methods provide a means to assess the structural integrity and safety of a civil structure using measurements of its dynamic properties. In particular, these techniques enable a quick damage assessment following a seismic event. In this thesis, the application of high-frequency seismograms to damage detection in civil structures is investigated.
Two novel methods for SHM are developed and validated using small-scale experimental testing, existing structures in situ, and numerical testing. The first method is developed for pre-Northridge steel-moment-resisting frame buildings that are susceptible to weld fracture at beam-column connections. The method is based on using the response of a structure to a nondestructive force (i.e., a hammer blow) to approximate the response of the structure to a damage event (i.e., weld fracture). The method is applied to a small-scale experimental frame, where the impulse response functions of the frame are generated during an impact hammer test. The method is also applied to a numerical model of a steel frame, in which weld fracture is modeled as the tensile opening of a Mode I crack. Impulse response functions are experimentally obtained for a steel moment-resisting frame building in situ. Results indicate that while acceleration and velocity records generated by a damage event are best approximated by the acceleration and velocity records generated by a colocated hammer blow, the method may not be robust to noise. The method seems to be better suited for damage localization, where information such as arrival times and peak accelerations can also provide indication of the damage location. This is of significance for sparsely-instrumented civil structures.
The second SHM method is designed to extract features from high-frequency acceleration records that may indicate the presence of damage. As short-duration high-frequency signals (i.e., pulses) can be indicative of damage, this method relies on the identification and classification of pulses in the acceleration records. It is recommended that, in practice, the method be combined with a vibration-based method that can be used to estimate the loss of stiffness. Briefly, pulses observed in the acceleration time series when the structure is known to be in an undamaged state are compared with pulses observed when the structure is in a potentially damaged state. By comparing the pulse signatures from these two situations, changes in the high-frequency dynamic behavior of the structure can be identified, and damage signals can be extracted and subjected to further analysis. The method is successfully applied to a small-scale experimental shear beam that is dynamically excited at its base using a shake table and damaged by loosening a screw to create a moving part. Although the damage is aperiodic and nonlinear in nature, the damage signals are accurately identified, and the location of damage is determined using the amplitudes and arrival times of the damage signal. The method is also successfully applied to detect the occurrence of damage in a test bed data set provided by the Los Alamos National Laboratory, in which nonlinear damage is introduced into a small-scale steel frame by installing a bumper mechanism that inhibits the amount of motion between two floors. The method is successfully applied and is robust despite a low sampling rate, though false negatives (undetected damage signals) begin to occur at high levels of damage when the frequency of damage events increases. The method is also applied to acceleration data recorded on a damaged cable-stayed bridge in China, provided by the Center of Structural Monitoring and Control at the Harbin Institute of Technology. Acceleration records recorded after the date of damage show a clear increase in high-frequency short-duration pulses compared to those previously recorded. One undamage pulse and two damage pulses are identified from the data. The occurrence of the detected damage pulses is consistent with a progression of damage and matches the known chronology of damage.
Resumo:
This thesis is a study of nonlinear phenomena in the propagation of electromagnetic waves in a weakly ionized gas externally biased with a magnetostatic field. The present study is restricted to the nonlinear phenomena rising from the interaction of electromagnetic waves in the ionized gas. The important effects of nonlinearity are wave-form distortion leads to cross modulation of one wave by a second amplitude-modulated wave.
The nonlinear effects are assumed to be small so that a perturbation method can be used. Boltzmann’s kinetic equation with an appropriate expression for the collision term is solved by expanding the electron distribution function into spherical harmonics in velocity space. In turn, the electron convection current density and the conductivity tensors of the nonlinear ionized gas are found from the distribution function. Finally, the expression for the current density and Maxwell’s equations are employed to investigate the effects of nonlinearity on the propagation of electromagnetic waves in the ionized gas, and also on the reflection of waves from an ionized gas of semi-infinite extent.
Resumo:
A partir da Lei n. 6.938 de 31 de agosto de 1981, que constituiu o Sistema Nacional do Meio Ambiente, criou-se o Conselho Nacional do Meio Ambiente e instituiu-se o Cadastro Técnico Federal de Atividades e Instrumentos de Defesa Ambiental, a gestão ambiental pública ganhou um espaço cada vez maior nas administrações municipais, com a implementação de instrumentos de gestão ambiental propiciando aos municípios a possibilidade de ações efetivas que contribuam para uma melhor qualidade de vida a população. Esse trabalho propõe a criação de um método de classificação municipal que indicará qual o nível da gestão ambiental do município. Verificando o número de instrumentos de gestão ambiental constituído e o número de problemas ambientais ocorridos em cada município na visão do gestor local nos anos de 2006/2008. E ainda qual a influência do IDH tanto na implementação de tais instrumentos de gestão ambiental, como nas ocorrências dos problemas ambientais. Tal classificação tem a intenção de verificar se o município encontra-se bem aparelhado no que se refere à gestão ambiental, auxiliando para futuras decisões nas ações da política ambiental local. O foco desse trabalho serão os municípios dos estados de Minas Gerais, Piauí e Rio de Janeiro. Os resultados serão processados via o software MATLAB utilizando lógica nebulosa (fuzzy) e apresentados em um website utilizando as linguagens de programação JSP, HTML, JavaScript e esse website armazenado em um servidor TomCat e tais resultados serão apresentados nas formas de valores alfanuméricos em tabelas e espaciais através de mapas temáticos em uma solução sig-web. Os dados estão armazenados em um Sistema Gerenciador de Banco de Dados PostgreSQL com sua extensão espacial PostGIS, e o acesso aos mapas será feito através do servidor de mapas MapServer.
Resumo:
This review discusses the processes involved in the decomposition of organic carbon derived initially from structural components of algae and other primary producers. It describes how groups of bacteria interact in time and space in a eutrophic lake. The relative importance of anaerobic and aerobic processes are discussed. The bulk of decomposition occurs within the sediment. The role of bacteria in the nitrogen cycle and the iron cycle, and in sulphate reduction and methanogenesis as the terminal metabolism of organic carbon are described.
Resumo:
Systems-level studies of biological systems rely on observations taken at a resolution lower than the essential unit of biology, the cell. Recent technical advances in DNA sequencing have enabled measurements of the transcriptomes in single cells excised from their environment, but it remains a daunting technical problem to reconstruct in situ gene expression patterns from sequencing data. In this thesis I develop methods for the routine, quantitative in situ measurement of gene expression using fluorescence microscopy.
The number of molecular species that can be measured simultaneously by fluorescence microscopy is limited by the pallet of spectrally distinct fluorophores. Thus, fluorescence microscopy is traditionally limited to the simultaneous measurement of only five labeled biomolecules at a time. The two methods described in this thesis, super-resolution barcoding and temporal barcoding, represent strategies for overcoming this limitation to monitor expression of many genes in a single cell. Super-resolution barcoding employs optical super-resolution microscopy (SRM) and combinatorial labeling via-smFISH (single molecule fluorescence in situ hybridization) to uniquely label individual mRNA species with distinct barcodes resolvable at nanometer resolution. This method dramatically increases the optical space in a cell, allowing a large numbers of barcodes to be visualized simultaneously. As a proof of principle this technology was used to study the S. cerevisiae calcium stress response. The second method, sequential barcoding, reads out a temporal barcode through multiple rounds of oligonucleotide hybridization to the same mRNA. The multiplexing capacity of sequential barcoding increases exponentially with the number of rounds of hybridization, allowing over a hundred genes to be profiled in only a few rounds of hybridization.
The utility of sequential barcoding was further demonstrated by adapting this method to study gene expression in mammalian tissues. Mammalian tissues suffer both from a large amount of auto-fluorescence and light scattering, making detection of smFISH probes on mRNA difficult. An amplified single molecule detection technology, smHCR (single molecule hairpin chain reaction), was developed to allow for the quantification of mRNA in tissue. This technology is demonstrated in combination with light sheet microscopy and background reducing tissue clearing technology, enabling whole-organ sequential barcoding to monitor in situ gene expression directly in intact mammalian tissue.
The methods presented in this thesis, specifically sequential barcoding and smHCR, enable multiplexed transcriptional observations in any tissue of interest. These technologies will serve as a general platform for future transcriptomic studies of complex tissues.