729 resultados para muscle protein


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several lines of evidence implicate the p38 mitogen-activated protein kinase (p38 MAPK) in the proinflammatory response to bacterial agents and cytokines. Equally, the transcription factor, nuclear factor (NF)-kappaB, is recognized to be a critical determinant of the inflammatory response in intestinal epithelial cells (IECs). However, the precise inter-relationship between the activation of p38 MAPK and activation of the transcription factor NF-kappaB in the intestinal epithelial cell (IEC) system, remains unknown. Here we show that interleukin (IL)-1beta activates all three MAPKs in Caco-2 cells. The production of IL-8 and monocyte chemotactic protein 1 (MCP-1) was attenuated by 50% when these cells were preincubated with the p38 MAPK inhibitor, SB 203580. Further investigation of the NF-kappaB signalling system revealed that the inhibitory effect was independent of the phosphorylation and degradation of IkappaBalpha, the binding partner of NF-kappaB. This effect was also independent of the DNA binding of the p65 Rel A subunit, as well as transactivation, determined by an NF-kappaB luciferase construct, using both SB 203580 and dominant-negative p38 MAPK. Evaluation of IL-8 and MCP-1 RNA messages by reverse transcription-polymerase chain reaction (RT-PCR) revealed that the inhibitory effect of SB 203580 was associated with a reduction in this parameter. Using an IL-8-luciferase promoter construct, an effect of p38 upon its activation by both pharmacological and dominant-negative p38 construct co-transfection was demonstrated. It is concluded that p38 MAPK influences the expression of chemokines in intestinal epithelial cells, through an effect upon the activation of the chemokine promoter, and does not directly involve the activation of the transcription factor NF-kappaB

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dental pulp cells (DPCs) are capable of differentiating into odontoblasts that secrete reparative dentin after pulp injury. The molecular mechanisms governing reparative dentinogenesis are yet to be fully understood. Here we investigated the differential protein profile of human DPCs undergoing odontogenic induction for 7 days. Using two-dimensional differential gel electrophoresis coupled with matrix-assisted laser adsorption ionization time of flight mass spectrometry, 2 3 protein spots related to the early odontogenic differentiation were identified. These proteins included cytoskeleton proteins, nuclear proteins, cell membrane-bound molecules, proteins involved in matrix synthesis, and metabolic enzymes. The expression of four identified proteins, which were heteronuclear ribonuclear proteins C, annexin VI, collagen type VI, and matrilin-2, was confirmed by Western blot and real-time realtime polymerase chain reaction analyses. This study generated a proteome reference map during odontoblast- like differentiation of human DPCs, which will be valuable to better understand the underlying molecular mechanisms in odontoblast-like differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Arabidopsis thaliana NPR1 has been shown to be a key regulator of gene expression during the onset of a plant disease-resistance response known as systemic acquired resistance. The npr1 mutant plants fail to respond to systemic acquired resistance-inducing signals such as salicylic acid (SA), or express SA-induced pathogenesis-related (PR) genes. Using NPR1 as bait in a yeast two-hybrid screen, we identified a subclass of transcription factors in the basic leucine zipper protein family (AHBP-1b and TGA6) and showed that they interact specifically in yeast and in vitro with NPR1. Point mutations that abolish the NPR1 function in A. thaliana also impair the interactions between NPR1 and the transcription factors in the yeast two-hybrid assay. Furthermore, a gel mobility shift assay showed that the purified transcription factor protein, AHBP-1b, binds specifically to an SA-responsive promoter element of the A. thaliana PR-1 gene. These data suggest that NPR1 may regulate PR-1 gene expression by interacting with a subclass of basic leucine zipper protein transcription factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper was retracted by the Journal of Stem Cells and Development on February 15, 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human knee acts as a sophisticated shock absorber during landing movements. The ability of the knee to perform this function in the real world is remarkable given that the context of the landing movement may vary widely between performances. For this reason, humans must be capable of rapidly adjusting the mechanical properties of the knee under impact load in order to satisfy many competing demands. However, the processes involved in regulating these properties in response to changing constraints remain poorly understood. In particular, the effects of muscle fatigue on knee function during step landing are yet to be fully explored. Fatigue of the knee muscles is significant for 2 reasons. First, it is thought to have detrimental effects on the ability of the knee to act as a shock absorber and is considered a risk factor for knee injury. Second, fatigue of knee muscles provides a unique opportunity to examine the mechanisms by which healthy individuals alter knee function. A review of the literature revealed that the effect of fatigue on knee function during landing has been assessed by comparing pre and postfatigue measurements, with fatigue induced by a voluntary exercise protocol. The information is limited by inconsistent results with key measures, such as knee stiffness, showing varying results following fatigue, including increased stiffness, decreased stiffness or failure to detect any change in some experiments. Further consideration of the literature questions the validity of the models used to induce and measure fatigue, as well as the pre-post study design, which may explain the lack of consensus in the results. These limitations cast doubt on the usefulness of the available information and identify a need to investigate alternative approaches. Based on the results of this review, the aims of this thesis were to: • evaluate the methodological procedures used in validation of a fatigue model • investigate the adaptation and regulation of post-impact knee mechanics during repeated step landings • use this new information to test the effects of fatigue on knee function during a step-landing task. To address the aims of the thesis, 3 related experiments were conducted that collected kinetic, kinematic and electromyographic data from 3 separate samples of healthy male participants. The methodologies involved optoelectronic motion capture (VICON), isokinetic dynamometry (System3 Pro, BIODEX) and wireless surface electromyography (Zerowire, Aurion, Italy). Fatigue indicators and knee function measures used in each experiment were derived from the data. Study 1 compared the validity and reliability of repetitive stepping and isokinetic contractions with respect to fatigue of the quadriceps and hamstrings. Fifteen participants performed 50 repetitions of each exercise twice in randomised order, over 4 sessions. Sessions were separated by a minimum of 1 week’s rest, to ensure full recovery. Validity and reliability depended on a complex interaction between the exercise protocol, the fatigue indicator, the individual and the muscle of interest. Nevertheless, differences between exercise protocols indicated that stepping was less effective in eliciting valid and reliable changes in peak power and spectral compression, compared with isokinetic exercise. A key finding was that fatigue progressed in a biphasic pattern during both exercises. The point separating the 2 phases, known as the transition point, demonstrated superior between-test reliability during the isokinetic protocol, compared with stepping. However, a correction factor should be used to accurately apply this technique to the study of fatigue during landing. Study 2 examined alterations in knee function during repeated landings, with a different sample (N =12) performing 60 consecutive step landing trials. Each landing trial was separated by 1-minute rest periods. The results provided new information in relation to the pre-post study design in the context of detecting adjustments in knee function during landing. First, participants significantly increased or decreased pre-impact muscle activity or post-impact mechanics despite environmental and task constraints remaining unchanged. This is the 1st study to demonstrate this effect in healthy individuals without external feedback on performance. Second, single-subject analysis was more effective in detecting alterations in knee function compared to group-level analysis. Finally, repeated landing trials did not reduce inter-trial variability of knee function in some participants, contrary to assumptions underpinning previous studies. The results of studies 1 and 2 were used to modify the design of Study 3 relative to previous research. These alterations included a modified isokinetic fatigue protocol, multiple pre-fatigue measurements and singlesubject analysis to detect fatigue-related changes in knee function. The study design incorporated new analytical approaches to investigate fatiguerelated alterations in knee function during landing. Participants (N = 16) were measured during multiple pre-fatigue baseline trial blocks prior to the fatigue model. A final block of landing trials was recorded once the participant met the operational fatigue definition that was identified in Study 1. The analysis revealed that the effects of fatigue in this context are heavily dependent on the compensatory response of the individual. A continuum of responses was observed within the sample for each knee function measure. Overall, preimpact preparation and post-impact mechanics of the knee were altered with highly individualised patterns. Moreover, participants used a range of active or passive pre-impact strategies to adapt post-impact mechanics in response to quadriceps fatigue. The unique patterns identified in the data represented an optimisation of knee function based on priorities of the individual. The findings of these studies explain the lack of consensus within the literature regarding the effects of fatigue on knee function during landing. First, functional fatigue protocols lack validity in inducing fatigue-related changes in mechanical output and spectral compression of surface electromyography (sEMG) signals, compared with isokinetic exercise. Second, fatigue-related changes in knee function during landing are confounded by inter-individual variation, which limits the sensitivity of group-level analysis. By addressing these limitations, the 3rd study demonstrated the efficacies of new experimental and analytical approaches to observe fatigue-related alterations in knee function during landing. Consequently, this thesis provides new perspectives into the effects of fatigue in knee function during landing. In conclusion: • The effects of fatigue on knee function during landing depend on the response of the individual, with considerable variation present between study participants, despite similar physical characteristics. • In healthy males, adaptation of pre-impact muscle activity and postimpact knee mechanics is unique to the individual and reflects their own optimisation of demands such as energy expenditure, joint stability, sensory information and loading of knee structures. • The results of these studies should guide future exploration of adaptations in knee function to fatigue. However, research in this area should continue with reduced emphasis on the directional response of the population and a greater focus on individual adaptations of knee function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aging is associated with loss of endurance; however, aging is also associated with decreased fatigue during maximal isometric contractions. The aims of this study were to examine the relationship between age and walking endurance (WE) and maximal isometric fatigue (MIF) and to determine which metabolic/fitness components explain the expected age effects on WE and MIF. Subjects were 96 pre-menopausal women. Oxygen uptake (walking economy) was assessed during a 3-mph walk; aerobic capacity and WE by progressive treadmill test; knee extension strength by isometric contractions, MIF during a 90-s isometric plantar flexion (muscle metabolism measured by 31P MRS). Age was related to increased walking economy (low VO2, r = −0.19, P < 0.03) and muscle metabolic economy (force/ATP, 0.34, P = 0.01), and reduced MIF (−0.26, P < 0.03). However, age was associated with reduced WE (−0.28, P < 0.01). Multiple regression showed that muscle metabolic economy explained the age-related decrease in MIF (partial r for MIF and age −0.13, P = 0.35) whereas walking economy did not explain the age-related decrease in WE (partial r for WE and age −0.25, P < 0.02). Inclusion of VO2max and knee endurance strength accounted for the age-related decreased WE (partial r for WE and age = 0.03, P > 0.80). In premenopausal women, age is related to WE and MIF. In addition, these results support the hypothesis that age-related increases in metabolic economy may decrease MIF. However, decreased muscle strength and oxidative capacity are related to WE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heart failure is a complex disorder, characterized by activation of the sympathetic nervous system, leading to dysregulated Ca2+ homeostasis in cardiac myocytes and tissue remodeling. In a variety of diseases, cardiac malfunction is associated with aberrant fluxes of Ca2+ across both the surface membrane and the internal Ca2+ store, the sarcoplasmic reticulum (SR). One prominent hypothesis residues is that in heart failure, the activity of the ryanodine receptor (RyR2) Ca2+ release channel in the SR is increased due to excess phosphorylation and that this contributes to excess SR Ca2+ leak in diastole, reduced SR Ca2+ load and decreased contractility (Huke & Bers, 2008). There is controversy over which serine residues in RyR2 are hyperphosphorylated in animal models of heart failure and whether this is via the CaMKII or the PKA-linked signaling pathway. S2808, S2814 and S2030 in RyR2 have been variously claimed to be hyperphosphorylated. Our aim was to examine the degree of phosphorylation of these residues in RyR2 from failing human hearts. The use of human tissue was approved by the Human Research Ethics Committee, The Prince Charles Hospital, EC28114. Left ventricular tissue samples were obtained from an explanted heart of a patient with endstage heart failure (Emery Dreifuss Muscular Dystrophy with cardiomyopathy) and non-failing tissue was from a patient with cystic fibrosis undergoing heart-lung transplantation with no history of heart disease. SR vesicles were prepared as described by Laver et al. (1995) and examined with SDS-Page and Western Blot. Transferred proteins were probed with antibodies to detect total protein phosphorylation, phosphorylation of RyR2 serine residues S2808, S2814, S2030 and for the key proteins calsequestrin, triadin, junctin and FKBP12.6. To avoid membrane stripping artifact, each membrane was exposed to one phosphorylation-specific antibody and signal densities quantified using Bio-Rad Quantity One software. We found no distinguishable difference between failing and healthy hearts in the protein expression levels of RyR2, triadin, junctin or calsequestrin. We found an expected upregulation of total RyR2 phosphorylation in the failing heart sample, compared to a matched amount of RyR2 (quantified using densiometry) in healthy heart. Probing with antibodies detecting only the phosphorylated form of the specific RyR2 residues showed that the increase in total RyR2 phosphorylation in the failing heart was due to hyperphosphorylation of S2808 and S2814. We found that S2030 phosphorylation levels were unchanged in human heart failure. Interestingly, we found that S2030 has a basal level of phosphorylation in the healthy human heart, different from the absence of basal phosphorylation recently reported in rodent heart (Huke & Bers, 2008). Finally, preliminary results indicate that less FKBP 12.6 is associated with RyR2 in the failing heart, possibly as a consequence of PKA activation. In conclusion, residues S2808 and S2814 are hyperphosphorylated in human heart failure, presumably due to upregulation of the CaMKII and/or PKA signaling pathway as a result of chronic activation of the sympathetic nervous system. Such changes in RyR2 phosphorylation are believed to contribute to the leaky RyR2 phenotype associated with heart failure, which increases the incidence of arrhythmia and contributes to the severely impaired contractile performance of the failing heart. Huke S & Bers DM. (2008). Ryanodine receptor phosphorylation at serine 2030, 2808 and 2814 in rat cardiomyocytes. Biochemical and Biophysical Research Communications 376, 80-85. Laver DR, Roden LD, Ahern GP, Eager KR, Junankar PR & Dulhunty AF. (1995). Cytoplasmic Ca2+ inhibits the ryanodine receptor from cardiac muscle. Journal of Membrane Biology 147, 7-22. Proceedings

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bean golden mosaic geminivirus (BGMV) has a bipartite genome composed of two circular ssDNA components (DNA-A and DNA-B) and is transmitted by the whitefly, Bemisia tabaci. DNA-A encodes the viral replication proteins and the coat protein. To determine the role of BGMV coat protein systemic infection and whitefly transmission, two deletions and a restriction fragment inversion were introduced into the BGMV coat protein gene. All three coat protein mutants produced systemic infections when coinoculated with DNA-B onto Phaseolus vulgaris using electric discharge particle acceleration "particle gun." However, they were not sap transmissible and coat protein was not detected in mutant-infected plants. In addition, none of the mutants were transmitted by whiteflies. With all three mutants, ssDNA accumulation of DNA-A and DNA-B was reduced 25- to 50-fold and 3- to 10-fold, respectively, as compared to that of wild-type DNA. No effect on dsDNA-A accumulation was detected and there was 2- to 5-fold increase in dsDNA-B accumulation. Recombinants between the mutated DNA-A and DNA-B forms were identified when the inoculated coat protein mutant was linearized in the common region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3D in vitro model systems that are able to mimic the in vivo microenvironment are now highly sought after in cancer research. Antheraea mylitta silk fibroin protein matrices were investigated as potential biomaterial for in vitro tumor modeling. We compared the characteristics of MDA-MB-231 cells on A. mylitta, Bombyx mori silk matrices, Matrigel, and tissue culture plates. The attachment and morphology of the MDA-MB-231 cell line on A. mylitta silk matrices was found to be better than on B. mori matrices and comparable to Matrigel and tissue culture plates. The cells grown in all 3D cultures showed more MMP-9 activity, indicating a more invasive potential. In comparison to B. mori fibroin, A. mylitta fibroin not only provided better cell adhesion, but also improved cell viability and proliferation. Yield coefficient of glucose consumed to lactate produced by cells on 3D A. mylitta fibroin was found to be similar to that of cancer cells in vivo. LNCaP prostate cancer cells were also cultured on 3D A. mylitta fibroin and they grew as clumps in long term culture. The results indicate that A. mylitta fibroin scaffold can provide an easily manipulated microenvironment system to investigate individual factors such as growth factors and signaling peptides, as well as evaluation of anticancer drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large mysticete whales represent a unique challenge for chemical risk assessment. Few epidemiological investigations are possible due to the low incidence of adult stranding events. Similarly their often extreme life-history adaptations of prolonged migration and fasting challenge exposure assumptions. Molecular biomarkers offer the potential to complement information yielded through tissue chemical analysis, as well as providing evidence of a molecular response to chemical exposure. In this study we confirm the presence of cytochrome P450 reductase (CPR) and cytochrome P450 isoenzyme 1A1 (CYP1A1) in epidermal tissue of southern hemisphere humpback whales (Megaptera novaeangliae). The detection of CYP1A1 in the integument of the humpback whale affords the opportunity for further quantitative non-destructive investigations of enzyme activity as a function of chemical stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eccentric contractions (ECC) require lower systemic oxygen (O2) and induce greater symptoms of muscle damage than concentric contractions (CON); however, it is not known if local muscle oxygenation is lower in ECC than CON during and following exercise. This study compared between ECC and CON for changes in biceps brachii muscle oxygenation [tissue oxygenation index (TOI)] and hemodynamics [total hemoglobin volume (tHb) = oxygenated-Hb + deoxygenated-Hb], determined by near-infrared spectroscopy over 10 sets of 6 maximal contractions of the elbow flexors of 10 healthy subjects. This study also compared between ECC and CON for changes in TOI and tHb during a 10-s sustained and 30-repeated maximal isometric contraction (MVC) task measured immediately before and after and 1–3 days following exercise. The torque integral during ECC was greater (P < 0.05) than that during CON by ∼30%, and the decrease in TOI was smaller (P < 0.05) by ∼50% during ECC than CON. Increases in tHb during the relaxation phases were smaller (P < 0.05) by ∼100% for ECC than CON; however, the decreases in tHb during the contraction phases were not significantly different between sessions. These results suggest that ECC utilizes a lower muscle O2 relative to O2 supply compared with CON. Following exercise, greater (P < 0.05) decreases in MVC strength and increases in plasma creatine kinase activity and muscle soreness were evident 1–3 days after ECC than CON. Torque integral, TOI, and tHb during the sustained and repeated MVC tasks decreased (P < 0.01) only after ECC, suggesting that muscle O2 demand relative to O2 supply during the isometric tasks was decreased after ECC. This could mainly be due to a lower maximal muscle mass activated as a consequence of muscle damage; however, an increase in O2 supply due to microcirculation dysfunction and/or inflammatory vasodilatory responses after ECC is recognized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to compare between electrical muscle stimulation (EMS) and maximal voluntary (VOL) isometric contractions of the elbow flexors for changes in biceps brachii muscle oxygenation (tissue oxygenation index, TOI) and haemodynamics (total haemoglobin volume, tHb = oxygenated-Hb + deoxygenated-Hb) determined by near-infrared spectroscopy (NIRS). The biceps brachii muscle of 10 healthy men (23–39 years) was electrically stimulated at high frequency (75 Hz) via surface electrodes to evoke 50 intermittent (4-s contraction, 15-s relaxation) isometric contractions at maximum tolerated current level (EMS session). The contralateral arm performed 50 intermittent (4-s contraction, 15-s relaxation) maximal voluntary isometric contractions (VOL session) in a counterbalanced order separated by 2–3 weeks. Results indicated that although the torque produced during EMS was approximately 50% of VOL (P<0Æ05), there was no significant difference in the changes in TOI amplitude or TOI slope between EMS and VOL over the 50 contractions. However, the TOI amplitude divided by peak torque was approximately 50% lower for EMS than VOL (P<0Æ05), which indicates EMS was less efficient than VOL. This seems likely because of the difference in the muscles involved in the force production between conditions. Mean decrease in tHb amplitude during the contraction phases was significantly (P<0Æ05) greater for EMS than VOL from the 10th contraction onwards, suggesting that the muscle blood volume was lower in EMS than VOL. It is concluded that local oxygen demand of the biceps brachii sampled by NIRS is similar between VOL and EMS.