947 resultados para murine


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The determination of lacunar-canalicular permeability is essential for understanding local fluid flow in bone, which may indicate how bone senses changes in the mechanical environment to regulate mechano-adaptation. The estimates of lacunar-canalicular permeability found in the literature vary by up to eight orders of magnitude, and age-related permeability changes have not been measured in non-osteonal mouse bone. The objective of this study is to use a poroelastic approach based on nanoindentation data to characterize lacunar-canalicular permeability in murine bone as a function of age. Nine wild type C57BL/6 mice of different ages (2, 7 and 12 months) were used. Three tibiae from each age group were embedded in epoxy resin, cut in half and indented in the longitudinal direction in the mid-cortex using two spherical fluid indenter tips (R=238 μm and 500 μm). Results suggest that the lacunar-canalicular intrinsic permeability of mouse bone decreases from 2 to 7 months, with no significant changes from 7 to 12 months. The large indenter tip imposed larger contact sizes and sampled larger ranges of permeabilities, particularly for the old bone. This age-related difference in the distribution was not seen for indents with the smaller radius tip. We conclude that the small tip effectively measured lacunar-canalicular permeability, while larger tip indents were influenced by vascular permeability. Exploring the age-related changes in permeability of bone measured by nanoindentation will lead to a better understanding of the role of fluid flow in mechano-transduction. This understanding may help indicate alterations in bone adaptation and remodeling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Upregulated gene 19 (U19)/ELL-associated factor 2 (Eaf2) is a potential human tumor suppressor that exhibits frequent allelic loss and downregulation in high-grade prostate cancer. U19/Eaf2, along with its homolog Eaf1, has been reported to regulate transcriptional elongation via interaction with the eleven-nineteen lysine-rich leukemia (ELL) family of proteins. To further explore the tumor-suppressive effects of U19/Eaf2, we constructed and characterized a murine U19/Eaf2-knockout model. Homozygous or heterozygous deletion of U19/Eaf2 resulted in high rates of lung adenocarcinoma, B-cell lymphoma, hepato cellular carcinoma and prostate intraepithelial neoplasia. Within the mouse prostate, U19/Eaf2 defficiency enhanced cell proliferation and increased epithelial cell size. The knockout mice also exhibited cardiac cell hypertrophy. These data indicate a role for U19/Eaf2 in growth suppression and cell size control as well as argue for U19/Eaf2 as a novel tumor suppressor in multiple mouse tissues. The U19/Eaf2 knockout mouse also provides a unique animal model for three important cancers: lung adenocarcinoma, B-cell lymphoma and hepatocellular carcinoma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The determination of lacunar-canalicular permeability is essential for understanding local fluid flow in bone, which may indicate how bone senses changes in the mechanical environment to regulate mechano-adaptation. The estimates of lacunar-canalicular permeability found in the literature vary by up to eight orders of magnitude, and age-related permeability changes have not been measured in non-osteonal mouse bone. The objective of this study is to use a poroelastic approach based on nanoindentation data to characterize lacunar-canalicular permeability in murine bone as a function of age. Nine wild type C57BL/6 mice of different ages (2, 7 and 12 months) were used. Three tibiae from each age group were embedded in epoxy resin, cut in half and indented in the longitudinal direction in the mid-cortex using two spherical fluid indenter tips (R=238 μm and 500 μm). Results suggest that the lacunar-canalicular intrinsic permeability of mouse bone decreases from 2 to 7 months, with no significant changes from 7 to 12 months. The large indenter tip imposed larger contact sizes and sampled larger ranges of permeabilities, particularly for the old bone. This age-related difference in the distribution was not seen for indents with the smaller radius tip. We conclude that the small tip effectively measured lacunar-canalicular permeability, while larger tip indents were influenced by vascular permeability. Exploring the age-related changes in permeability of bone measured by nanoindentation will lead to a better understanding of the role of fluid flow in mechano-transduction. This understanding may help indicate alterations in bone adaptation and remodeling. © 2013 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many B cell epitopes within p24 of human immunodeficiency virus type 1 (HIV-1) were identified, while most of them were determined by using murine monoclonal antibodies reacting with overlapping peptides of p24. Therefore these epitopes may not represent the actual epitopes recognized by the HIV-1 infected individuals. In the present study, immune responses of 67 HIV-1 positive sera from Yunnan Province, China to five peptides on p24 of HIV-1 and one of HIV-2 were analyzed. All of 67 sera did not recognize peptide GA-12 on HIV-1 and peptide AG-23 on HIV-2, which indicated that GA-12 was not human B cell epitope and AG-23 did not cross-react with HIV-1 positive serum. Except 13 sera (19.4%), all remaining sera did not recognize peptides NI-15, DR-16, DC-22 and PS-18, which indicated that these four peptides represented B cell linear epitopes of HIV-1 p24 in some HIV-1 infected individuals but not the immuno-dominant epitopes in most individuals. Cellular & Molecular Immunology. 2005;2(4):289-293.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

为了弄清生殖道内抗体,特别是IgA抗体的准确来源和它的调控因子,同时也为了弄清生殖的局部免疫与典型的粘腊免疫之间的关系,以同位素标记的针对精子特有抗原乳酸脱氢酶C4(LDH-C4)的多聚IgA单抗及其单体,与小鼠精子发生反应的IgA单抗,以及LDH-C4特异的IgG抗体,尾静脉注射给雌雄Balb/c小鼠,4小时后测定小鼠的生殖道及其分汾物,肠道、呼吸道及其分泌物,各相关淋巴组织以及其它器官内这些抗体的分布。还研究了特异抗原刺激、性激素等对这些抗体分布状况的影响。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA double-strand breaks (DSBs) are the most deleterious lesion inflicted by ionizing radiation. Although DSBs are potentially carcinogenic, it is not clear whether complex DSBs that are refractory to repair are more potently tumorigenic compared with simple breaks that can be rapidly repaired, correctly or incorrectly, by mammalian cells. We previously demonstrated that complex DSBs induced by high-linear energy transfer (LET) Fe ions are repaired slowly and incompletely, whereas those induced by low-LET gamma rays are repaired efficiently by mammalian cells. To determine whether Fe-induced DSBs are more potently tumorigenic than gamma ray-induced breaks, we irradiated 'sensitized' murine astrocytes that were deficient in Ink4a and Arf tumor suppressors and injected the surviving cells subcutaneously into nude mice. Using this model system, we find that Fe ions are potently tumorigenic, generating tumors with significantly higher frequency and shorter latency compared with tumors generated by gamma rays. Tumor formation by Fe-irradiated cells is accompanied by rampant genomic instability and multiple genomic changes, the most interesting of which is loss of the p15/Ink4b tumor suppressor due to deletion of a chromosomal region harboring the CDKN2A and CDKN2B loci. The additional loss of p15/Ink4b in tumors derived from cells that are already deficient in p16/Ink4a bolsters the hypothesis that p15 plays an important role in tumor suppression, especially in the absence of p16. Indeed, we find that reexpression of p15 in tumor-derived cells significantly attenuates the tumorigenic potential of these cells, indicating that p15 loss may be a critical event in tumorigenesis triggered by complex DSBs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

为了将放射治疗与基因治疗有机结合起来以寻求有效治疗恶性黑色素瘤的方法,采用了AdCMV-p53(AdCMV-GFP)转染B16细胞联合重离子(或X-射线)辐照的方法,观察辐射对基因转移效率的影响、外源性P53蛋白对重离子辐照诱导肿瘤细胞生长抑制和辐射增敏作用,以及外源性P53蛋白对重离子辐照诱导肿瘤细胞内蛋白表达的变化,现将本工作结果总结如下: 1.重离子照射可增加腺病毒载体介导p53基因转导效率,而且先转染后辐照法比先辐照后转染法能更显著的地增加基因转导效率。这样在最大限度提高基因转导效率的基础之上,同时又可以减少病毒使用量及辐照剂量。 2.p53基因转导联合重离子辐照能明显抑制细胞生长,诱导细胞凋亡,促进G0/G1期细胞阻滞。说明外源性野生型p53基因导入联合辐照可增加黑色素瘤细胞系B16的辐射敏感性。 3.重离子照射比X-射线照射能更明显增加腺病毒载体介导p53基因转导效率和G0/G1期细胞所占比例,可能是由于两种射线能量沉积的方式不同造成的。 4.重离子辐照联合p53基因转导诱导B16细胞中细胞信号通路发生变化,使得P53和P21表达明显增多,同时MDM2表达随时间而减少。推测导入的p53基因联合重离子辐照改变细胞内信号通路,从而诱导细胞凋亡和细胞周期阻滞

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The consequence of activation status or gain/loss of an X-chromosome in terms of the expression of tumor suppressor genes or oncogenes in breast cancer has not been clearly addressed. In this study, we investigated the activation status of the X-chromosomes in a panel of human breast cancer cell lines, human breast carcinoma, and adjacent mammary tissues and a panel of murine mammary epithelial sublines ranging from low to high invasive potentials. Results show that most human breast cancer cell lines were homozygous, but both benign cell lines were heterozygous for highly polymorphic X-loci (IDS and G6PD). On the other hand, 60% of human breast carcinoma cases were heterozygous for either IDS or G6PD markers. Investigation of the activation status of heterozygous cell lines revealed the presence of only one active X-chromosome, whereas most heterozygous human breast carcinoma cases had two active X-chromosomes. Furthermore, we determined whether or not an additional active X-chromosome affects expression levels of tumor suppressor genes and oncogenes. Reverse transcription-PCR data show high expression of putative tumor suppressor genes Rsk4 and RbAp46 in 47% and 79% of breast carcinoma cases, respectively, whereas Cldn2 was down-regulated in 52% of breast cancer cases compared with normal adjacent tissues. Consistent with mRNA expression, immunostaining for these proteins also showed a similar pattern. In conclusion, our data suggest that high expression of RbAp46 is likely to have a role in the development or progression of human breast cancer. The activation status of the X-chromosome may influence the expression levels of X-linked oncogenes or tumor suppressor genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Discovery and development of new pharmaceuticals from marine organisms are attracting increasing interest. Several agents derived from marine organisms are under preclinical and clinical evaluation as potential anticancer drugs. We extracted and purified a novel anti-tumor protein from the coelomic fluid of Meretrix meretrix Linnaeus by ammonium sulphate fractionation, ion exchange and hydrophobic interaction chromatography. The molecular weight of the highly purified protein, designated MML, was 40 kDa as determined by SDS-PAGE analysis. MML exhibited significant cytotoxicity to several cancer cell types, including human hepatoma BEL-7402, human breast cancer MCF-7 and human colon cancer HCT116 cells. However, no inhibitory effect was found when treating murine normal fibroblasts NIH3T3 and benign human breast MCF-10A cells with MML. The cell death induced by MML was characterized by cell morphological changes. The induction of apoptosis of BEL-7402 cells by MML was weak by DNA ladder assay. The possible mechanisms of its anti-tumor effect might be the changes in cell membrane permeability and inhibition of tubulin polymerization. MML may be developed as a novel, highly selective and effective anti-cancer drug.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

从传统藏药五脉绿绒蒿(Meconopsis quintuplinervia Regel.)全草乙醇提取物中分离得到 6个化合物,利用波谱方法鉴定为 8,9-dihydroxy-1,5,6,10b-tetrahydro-2H-pyrrolo[2,1-a]isoquinolin-3-one(1)、甲氧基淡黄巴豆亭碱(o-methylflavi nantine,2)、黑水罂粟碱(murine,3)、tricin(4)、木犀草素(luteolin,5)以及β-谷甾醇(β-sitosterol,6).其中化合物1,4为首次从该植物中分得.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuroinflammation is a key component of Parkinson’s disease (PD) neuropathology. Skewed microglia activation with pro-inflammatory prevailing over anti-inflammatory phenotypes may contribute to neurotoxicity via the production of cytokines and neurotoxic species. Therefore, microglia polarization has been proposed as a target for neuroprotection. The peroxisome proliferator-activated receptor gamma (PPARγ) is expressed in microglia and peripheral immune cells, where it is involved in macrophages polarization and in the control of inflammatory responses, by modulating gene transcription. Several studies have shown that PPARγ agonists are neuroprotective in experimental PD models in rodents and primates. however safety concerns have been raised about PPARγ agonists thiazolidinediones (TZD) currently available, prompting for the development of non-TZD compounds. Aim of this study was to characterize a novel PPARγ agonist non TZD, MDG548, for its potential neuroprotective effect in PD models and its immunomodulatory activity as the underlying mechanism of neuroprotection. The neuroprotective activity of MDG548 was assessed in vivo in the subacute MPTP model and in the chronic MPTP/probenecid (MPTPp) model of PD. MDG548 activity on microglia activation and phenotype was investigated in the substantia nigra pars compacta (SNc) via the evaluation of pro- (TNF-α and iNOS) and anti-inflammatory (CD206) molecules, with fluorescent immunohistochemistry. Moreover, cultured murine microglia MMGT12 were treated with MDG548 in association with the inflammagen LPS, pro- and anti-inflammatory molecules were measured in the medium by ELISA assay and phagocytosis was evaluated by fluorescent immunohistochemistry for CD68. MDG548 arrested dopaminergic cells degeneration in the SNc in both the subacute MPTP and the chronic MPTPp models of PD, and reverted MPTPp-induced motor impairment. Moreover, MDG548 reduced microglia activation, iNOS and TNF-α production, while induced CD206 in microglia. In cultured unstimulated microglia, LPS increased TNF-α production and CD68 expression, while decreased CD206 expression. MDG548 reverted LPS effect on TNF-α and CD206 restoring physiological levels, while strongly increased CD68 expression. Results suggest that the PPARγ agonist MDG548 is neuroprotective in experimental models of PD. MDG548 targets microglia polarization by correcting the imbalance between pro- over antiinflammatory molecules, offering a novel immunomodulatory approach to neuroprotection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chronic graft-versus-host disease (cGVHD) is a frequent cause of morbimortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT), and severely compromises patients' physical capacity. Despite the aggressive nature of the disease, aerobic exercise training can positively impact survival as well as clinical and functional parameters. We analyzed potential mechanisms underlying the recently reported cardiac function improvement in an exercise-trained cGVHD murine model receiving lethal total body irradiation and immunosuppressant treatment (Fiuza-Luces et al., 2013. Med Sci Sports Exerc 45, 1703-1711). We hypothesized that a cellular quality-control mechanism that is receiving growing attention in biomedicine, autophagy, was involved in such improvement. Our results suggest that exercise training elicits a positive autophagic adaptation in the myocardium that may help preserve cardiac function even at the end-stage of a devastating disease like cGVHD. These preliminary findings might provide new insights into the cardiac exercise benefits in chronic/debilitating conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Lnx1 (Ligand of Numb protein X 1) and Lnx2 genes belong to a family of PDZ domain-containing RING finger domain E3 ubiquitin ligases. mRNA expression for both genes have been reported in early murine central nervous system. However, there have been limited reports with regards to the expression patterns for both the proteins in vivo. Hence, we have attempted to characterize the significance of these proteins in the context of morphology and physiology of the central nervous system. Through our studies, we have attempted to examine closely the expression of these two genes in the murine central nervous system. We have also looked at novel interacting ligands for both proteins. Interacting partners have been examined with particular relevance to possible roles of their interactions with LNX1 and LNX2 in the functioning of the nervous system. Moreover, we have performed loss-of-function studies by way of creation and characterization of knockout mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pregnancy-Specific Glycoproteins (PSG) are the most abundant fetally expressed proteins in the maternal bloodstream at term. This multigene family are immunoglobulin superfamily members and are predominantly expressed in the syncytiotrophoblast of human placenta and in giant cells and spongiotrophoblast of rodent placenta. PSGs are encoded by seventeen genes in the mouse and ten genes in the human. Little is known about the function of this gene family, although they have been implicated in immune modulation and angiogenesis through the induction of cytokines such as IL-10 and TGFβ1 in monocytes, and more recently, have been shown to inhibit the platelet-fibrinogen interaction. I provide new information concerning the evolution of the murine Psg genomic locus structure and organisation, through the discovery of a recent gene inversion event of Psg22 within the major murine Psg cluster. In addition to this, I have performed an examination of the expression patterns of individual Psg genes in placental and non-placental tissues. This study centres on Psg22, which is the most abundant murine Psg transcript detected in the first half of pregnancy. A novel alternative splice variant transcript of Psg22 lacking the protein N1-domain was discovered, and similar to the full length isoform induces TGFβ1 in macrophage and monocytic cell lines. The identification of a bidirectional antisense long non-coding RNA transcript directly adjacent to Psg22 and its associated active local chromatin conformation, suggests an interesting epigenetic gene-specific regulatory mechanism that may be responsible for the high level of Psg22 expression relative to the other Psg family members upon trophoblast giant cell differentiation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, extensive research has been carried out on the health benefits of milk proteins and peptides. Biologically active peptides are defined as specific protein fragments which have a positive impact on the physiological functions of the body; such peptides are produced naturally in vivo, but can also be generated by physical and/or chemical processes, enzymatic hydrolysis and/or microbial fermentation. The aims of this thesis were to investigate not only the traditional methods used for the generation of bioactive peptides, but also novel processes such as heat treatment, and the role of indigenous milk proteases, e.g., in mastitic milk, in the production of such peptides. In addition, colostrum was characterised as a source of bioactive proteins and peptides. Firstly, a comprehensive study was carried out on the composition and physical properties of colostrum throughout the early-lactation period. Marked differences in the physico-chemical properties of colostrum compared with milk were observed. Various fractions of colostrum were also tested for their effect on the secretion of pro- and anti-inflammatory cytokines from a macrophage cell line and bone marrow dendritic cells, as well as insulin secretion from a pancreatic beta cell line. A significant reduction in the secretion of the pro-inflammatory cytokines, TNF-α, IL-6, IL-1β and IL-12, a significant increase in the secretion of the anti-inflammatory cytokine, IL-10, as well as a significant increase in insulin secretion were observed for various colostrum fractions. Another study examined the early proteomic changes in the milk of 8 cows in response to infusion with the endotoxin lipopolysaccharide (LPS) at quarter level in a model mastitic system; marked differences in the protein and peptide profile of milk from LPS challenged cows were observed, and a pH 4.6-soluble fraction of this milk was found to cause a substantial induction in the secretion of IL-10 from a murine macrophage cell line. Heat-induced hydrolysis of sodium caseinate was investigated from the dual viewpoints of protein breakdown and peptide formation, and, a peptide fraction produced in this manner was found to cause a significant increase in the secretion of the anti-inflammatory cytokine, IL-10, from a murine macrophage cell line. The effects of sodium caseinate hydrolysed by chymosin on the gut-derived satiety hormone glucagon-like peptide-1 (GLP-1) were investigated; the resulting casein-derived peptides displayed good in vitro and in vivo secretion of GLP-1. Overall, the studies described in this thesis expand on current knowledge and provide good evidence for the use of novel methods for the isolation, generation and characterisation of bioactive proteins and/or peptides.