898 resultados para motion cueing algorithm (MCA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we evaluate the Probabilistic Occupancy Map (POM) pedestrian detection algorithm on the PETS 2009 benchmark dataset. POM is a multi-camera generative detection method, which estimates ground plane occupancy from multiple background subtraction views. Occupancy probabilities are iteratively estimated by fitting a synthetic model of the background subtraction to the binary foreground motion. Furthermore, we test the integration of this algorithm into a larger framework designed for understanding human activities in real environments. We demonstrate accurate detection and localization on the PETS dataset, despite suboptimal calibration and foreground motion segmentation input.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we introduce a new algorithm, based on the successful work of Fathi and Alexandrov, on hybrid Monte Carlo algorithms for matrix inversion and solving systems of linear algebraic equations. This algorithm consists of two parts, approximate inversion by Monte Carlo and iterative refinement using a deterministic method. Here we present a parallel hybrid Monte Carlo algorithm, which uses Monte Carlo to generate an approximate inverse and that improves the accuracy of the inverse with an iterative refinement. The new algorithm is applied efficiently to sparse non-singular matrices. When we are solving a system of linear algebraic equations, Bx = b, the inverse matrix is used to compute the solution vector x = B(-1)b. We present results that show the efficiency of the parallel hybrid Monte Carlo algorithm in the case of sparse matrices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many evolutionary algorithm applications involve either fitness functions with high time complexity or large dimensionality (hence very many fitness evaluations will typically be needed) or both. In such circumstances, there is a dire need to tune various features of the algorithm well so that performance and time savings are optimized. However, these are precisely the circumstances in which prior tuning is very costly in time and resources. There is hence a need for methods which enable fast prior tuning in such cases. We describe a candidate technique for this purpose, in which we model a landscape as a finite state machine, inferred from preliminary sampling runs. In prior algorithm-tuning trials, we can replace the 'real' landscape with the model, enabling extremely fast tuning, saving far more time than was required to infer the model. Preliminary results indicate much promise, though much work needs to be done to establish various aspects of the conditions under which it can be most beneficially used. A main limitation of the method as described here is a restriction to mutation-only algorithms, but there are various ways to address this and other limitations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present error analysis for a Monte Carlo algorithm for evaluating bilinear forms of matrix powers. An almost Optimal Monte Carlo (MAO) algorithm for solving this problem is formulated. Results for the structure of the probability error are presented and the construction of robust and interpolation Monte Carlo algorithms are discussed. Results are presented comparing the performance of the Monte Carlo algorithm with that of a corresponding deterministic algorithm. The two algorithms are tested on a well balanced matrix and then the effects of perturbing this matrix, by small and large amounts, is studied.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the feasibility of wireless terahertz communications links deployed in a metropolitan area and model the large-scale fading of such channels. The model takes into account reception through direct line of sight, ground and wall reflection, as well as diffraction around a corner. The movement of the receiver is modeled by an autonomous dynamic linear system in state space, whereas the geometric relations involved in the attenuation and multipath propagation of the electric field are described by a static nonlinear mapping. A subspace algorithm in conjunction with polynomial regression is used to identify a single-output Wiener model from time-domain measurements of the field intensity when the receiver motion is simulated using a constant angular speed and an exponentially decaying radius. The identification procedure is validated by using the model to perform q-step ahead predictions. The sensitivity of the algorithm to small-scale fading, detector noise, and atmospheric changes are discussed. The performance of the algorithm is tested in the diffraction zone assuming a range of emitter frequencies (2, 38, 60, 100, 140, and 400 GHz). Extensions of the simulation results to situations where a more complicated trajectory describes the motion of the receiver are also implemented, providing information on the performance of the algorithm under a worst case scenario. Finally, a sensitivity analysis to model parameters for the identified Wiener system is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The large scale fading of wireless mobile communications links is modelled assuming the mobile receiver motion is described by a dynamic linear system in state-space. The geometric relations involved in the attenuation and multi-path propagation of the electric field are described by a static non-linear mapping. A Wiener system subspace identification algorithm in conjunction with polynomial regression is used to identify a model from time-domain estimates of the field intensity assuming a multitude of emitters and an antenna array at the receiver end.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The usefulness of motor subtypes of delirium is unclear due to inconsistency in sub-typing methods and a lack of validation with objective measures of activity. The activity of 40 patients was measured with 24 h accelerometry monitoring. Patients with Diagnostic and Statistical Manual of Mental Disorders, fourth edition (DSM-IV) delirium (n = 30) were allocated into hyperactive, hypoactive and mixed motor subtypes. Delirium subtypes differed in relation to overall amount of activity, including movement in both sagittal and transverse planes. Differences were greater in the daytime and during the early evening ‘sundowning’ period. Frequency of postural changes was the most discriminating measure examined. Clinical subtypes of delirium defined by observed motor behaviour on the ward differ in electronically measured activity levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, a Box-Cox transformation-based radial basis function (RBF) neural network is introduced using the RBF neural network to represent the transformed system output. Initially a fixed and moderate sized RBF model base is derived based on a rank revealing orthogonal matrix triangularization (QR decomposition). Then a new fast identification algorithm is introduced using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator. The main contribution of this letter is to explore the special structure of the proposed RBF neural network for computational efficiency by utilizing the inverse of matrix block decomposition lemma. Finally, the Box-Cox transformation-based RBF neural network, with good generalization and sparsity, is identified based on the derived optimal Box-Cox transformation and a D-optimality-based orthogonal forward regression algorithm. The proposed algorithm and its efficacy are demonstrated with an illustrative example in comparison with support vector machine regression.