890 resultados para monotone estimating


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presentation focuses on estimating benefits of environmental projects and achievements like image improvement, gaining an environmental award, profit from environmentally benign products, risk reduction benefits, etc. The paper integrates the results and experience gained in three different fields: EMA, evaluation of natural resources and working as a consultant

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accurate and reliable estimation of travel time based on point detector data is needed to support Intelligent Transportation System (ITS) applications. It has been found that the quality of travel time estimation is a function of the method used in the estimation and varies for different traffic conditions. In this study, two hybrid on-line travel time estimation models, and their corresponding off-line methods, were developed to achieve better estimation performance under various traffic conditions, including recurrent congestion and incidents. The first model combines the Mid-Point method, which is a speed-based method, with a traffic flow-based method. The second model integrates two speed-based methods: the Mid-Point method and the Minimum Speed method. In both models, the switch between travel time estimation methods is based on the congestion level and queue status automatically identified by clustering analysis. During incident conditions with rapidly changing queue lengths, shock wave analysis-based refinements are applied for on-line estimation to capture the fast queue propagation and recovery. Travel time estimates obtained from existing speed-based methods, traffic flow-based methods, and the models developed were tested using both simulation and real-world data. The results indicate that all tested methods performed at an acceptable level during periods of low congestion. However, their performances vary with an increase in congestion. Comparisons with other estimation methods also show that the developed hybrid models perform well in all cases. Further comparisons between the on-line and off-line travel time estimation methods reveal that off-line methods perform significantly better only during fast-changing congested conditions, such as during incidents. The impacts of major influential factors on the performance of travel time estimation, including data preprocessing procedures, detector errors, detector spacing, frequency of travel time updates to traveler information devices, travel time link length, and posted travel time range, were investigated in this study. The results show that these factors have more significant impacts on the estimation accuracy and reliability under congested conditions than during uncongested conditions. For the incident conditions, the estimation quality improves with the use of a short rolling period for data smoothing, more accurate detector data, and frequent travel time updates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary purpose of this study was to investigate agreement among five equations by which clinicians estimate water requirements (EWR) and to determine how well these equations predict total water intake (TWI). The Institute of Medicine has used TWI as a measure of water requirements. A secondary goal of this study was to develop practical equations to predict TWI. These equations could then be considered accurate predictors of an individual’s water requirement. ^ Regressions were performed to determine agreement between the five equations and between the five equations and TWI using NHANES 1999–2004. The criteria for agreement was (1) strong correlation coefficients between all comparisons and (2) regression line that was not significantly different when compared to the line of equality (x=y) i.e., the 95% CI of the slope and intercept must include one and zero, respectively. Correlations were performed to determine association between fat-free mass (FFM) and TWI. Clinically significant variables were selected to build equations for predicting TWI. All analyses were performed with SAS software and were weighted to account for the complex survey design and for oversampling. ^ Results showed that the five EWR equations were strongly correlated but did not agree with each other. Further, the EWR equations were all weakly associated to TWI and lacked agreement with TWI. The strongest agreement between the NRC equation and TWI explained only 8.1% of the variability of TWI. Fat-free mass was positively correlated to TWI. Two models were created to predict TWI. Both models included the variables, race/ethnicity, kcals, age, and height, but one model also included FFM and gender. The other model included BMI and osmolality. Neither model accounted for more than 28% of the variability of TWI. These results provide evidence that estimates of water requirements would vary depending upon which EWR equation was selected by the clinician. None of the existing EWR equations predicted TWI, nor could a prediction equation be created which explained a satisfactory amount of variance in TWI. A good estimate of water requirements may not be predicted by TWI. Future research should focus on using more valid measures to predict water requirements.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent attention has focused on the high rates of annual carbon sequestration in vegetated coastal ecosystems—marshes, mangroves, and seagrasses—that may be lost with habitat destruction (‘conversion’). Relatively unappreciated, however, is that conversion of these coastal ecosystems also impacts very large pools of previously-sequestered carbon. Residing mostly in sediments, this ‘blue carbon’ can be released to the atmosphere when these ecosystems are converted or degraded. Here we provide the first global estimates of this impact and evaluate its economic implications. Combining the best available data on global area, land-use conversion rates, and near-surface carbon stocks in each of the three ecosystems, using an uncertainty-propagation approach, we estimate that 0.15–1.02 Pg (billion tons) of carbon dioxide are being released annually, several times higher than previous estimates that account only for lost sequestration. These emissions are equivalent to 3–19% of those from deforestation globally, and result in economic damages of $US 6–42 billion annually. The largest sources of uncertainty in these estimates stems from limited certitude in global area and rates of land-use conversion, but research is also needed on the fates of ecosystem carbon upon conversion. Currently, carbon emissions from the conversion of vegetated coastal ecosystems are not included in emissions accounting or carbon market protocols, but this analysis suggests they may be disproportionally important to both. Although the relevant science supporting these initial estimates will need to be refined in coming years, it is clear that policies encouraging the sustainable management of coastal ecosystems could significantly reduce carbon emissions from the land-use sector, in addition to sustaining the well-recognized ecosystem services of coastal habitats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Highway Safety Manual (HSM) estimates roadway safety performance based on predictive models that were calibrated using national data. Calibration factors are then used to adjust these predictive models to local conditions for local applications. The HSM recommends that local calibration factors be estimated using 30 to 50 randomly selected sites that experienced at least a total of 100 crashes per year. It also recommends that the factors be updated every two to three years, preferably on an annual basis. However, these recommendations are primarily based on expert opinions rather than data-driven research findings. Furthermore, most agencies do not have data for many of the input variables recommended in the HSM. This dissertation is aimed at determining the best way to meet three major data needs affecting the estimation of calibration factors: (1) the required minimum sample sizes for different roadway facilities, (2) the required frequency for calibration factor updates, and (3) the influential variables affecting calibration factors. In this dissertation, statewide segment and intersection data were first collected for most of the HSM recommended calibration variables using a Google Maps application. In addition, eight years (2005-2012) of traffic and crash data were retrieved from existing databases from the Florida Department of Transportation. With these data, the effect of sample size criterion on calibration factor estimates was first studied using a sensitivity analysis. The results showed that the minimum sample sizes not only vary across different roadway facilities, but they are also significantly higher than those recommended in the HSM. In addition, results from paired sample t-tests showed that calibration factors in Florida need to be updated annually. To identify influential variables affecting the calibration factors for roadway segments, the variables were prioritized by combining the results from three different methods: negative binomial regression, random forests, and boosted regression trees. Only a few variables were found to explain most of the variation in the crash data. Traffic volume was consistently found to be the most influential. In addition, roadside object density, major and minor commercial driveway densities, and minor residential driveway density were also identified as influential variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We thank the Tsawout and Tseycum First Nation bands for access to Mandarte, everyone who contributed to the long-term data collection, and the European Research Council and Royal Society for funding. We thank J.D. Hadfield, P. Bijma, E. Postma, and L.F. Keller for illuminatingdiscussions. Also, L.E.B. Kruuk, R. Bonduriansky, and an anonymous reviewer provided insightful comments that improved the manuscript.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimates of abundance or density are essential for wildlife management and conservation. There are few effective density estimates for the Buff-throated Partridge Tetraophasis szechenyii, a rare and elusive high-mountain Galliform species endemic to western China. In this study, we used the temporary emigration N-mixture model to estimate density of this species, with data acquired from playback point count surveys around a sacred area based on indigenous Tibetan culture of protection of wildlife, in Yajiang County, Sichuan, China, during April–June 2009. Within 84 125-m radius points, we recorded 53 partridge groups during three repeats. The best model indicated that detection probability was described by covariates of vegetation cover type, week of visit, time of day, and weather with weak effects, and a partridge group was present during a sampling period with a constant probability. The abundance component was accounted for by vegetation association. Abundance was substantially higher in rhododendron shrubs, fir-larch forests, mixed spruce-larch-birch forests, and especially oak thickets than in pine forests. The model predicted a density of 5.14 groups/km², which is similar to an estimate of 4.7 – 5.3 groups/km² quantified via an intensive spot-mapping effort. The post-hoc estimate of individual density was 14.44 individuals/km², based on the estimated mean group size of 2.81. We suggest that the method we employed is applicable to estimate densities of Buff-throated Partridges in large areas. Given importance of a mosaic habitat for this species, local logging should be regulated. Despite no effect of the conservation area (sacred) on the abundance of Buff-throated Partridges, we suggest regulations linking the sacred mountain conservation area with the official conservation system because of strong local participation facilitated by sacred mountains in land conservation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers the analysis of data from randomized trials which offer a sequence of interventions and suffer from a variety of problems in implementation. In experiments that provide treatment in multiple periods (T>1), subjects have up to 2^{T}-1 counterfactual outcomes to be estimated to determine the full sequence of causal effects from the study. Traditional program evaluation and non-experimental estimators are unable to recover parameters of interest to policy makers in this setting, particularly if there is non-ignorable attrition. We examine these issues in the context of Tennessee's highly influential randomized class size study, Project STAR. We demonstrate how a researcher can estimate the full sequence of dynamic treatment effects using a sequential difference in difference strategy that accounts for attrition due to observables using inverse probability weighting M-estimators. These estimates allow us to recover the structural parameters of the small class effects in the underlying education production function and construct dynamic average treatment effects. We present a complete and different picture of the effectiveness of reduced class size and find that accounting for both attrition due to observables and selection due to unobservable is crucial and necessary with data from Project STAR

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estimates of HIV prevalence are important for policy in order to establish the health status of a country's population and to evaluate the effectiveness of population-based interventions and campaigns. However, participation rates in testing for surveillance conducted as part of household surveys, on which many of these estimates are based, can be low. HIV positive individuals may be less likely to participate because they fear disclosure, in which case estimates obtained using conventional approaches to deal with missing data, such as imputation-based methods, will be biased. We develop a Heckman-type simultaneous equation approach which accounts for non-ignorable selection, but unlike previous implementations, allows for spatial dependence and does not impose a homogeneous selection process on all respondents. In addition, our framework addresses the issue of separation, where for instance some factors are severely unbalanced and highly predictive of the response, which would ordinarily prevent model convergence. Estimation is carried out within a penalized likelihood framework where smoothing is achieved using a parametrization of the smoothing criterion which makes estimation more stable and efficient. We provide the software for straightforward implementation of the proposed approach, and apply our methodology to estimating national and sub-national HIV prevalence in Swaziland, Zimbabwe and Zambia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop further the new versions of quantum chromatic numbers of graphs introduced by the first and fourth authors. We prove that the problem of computation of the commuting quantum chromatic number of a graph is solvable by an SDP algorithm and describe an hierarchy of variants of the commuting quantum chromatic number which converge to it. We introduce the tracial rank of a graph, a parameter that gives a lower bound for the commuting quantum chromatic number and parallels the projective rank, and prove that it is multiplicative. We describe the tracial rank, the projective rank and the fractional chromatic numbers in a unified manner that clarifies their connection with the commuting quantum chromatic number, the quantum chromatic number and the classical chromatic number, respectively. Finally, we present a new SDP algorithm that yields a parameter larger than the Lovász number and is yet a lower bound for the tracial rank of the graph. We determine the precise value of the tracial rank of an odd cycle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-08