916 resultados para modeling and prediction
Resumo:
In this work, we propose the Seasonal Dynamic Factor Analysis (SeaDFA), an extension of Nonstationary Dynamic Factor Analysis, through which one can deal with dimensionality reduction in vectors of time series in such a way that both common and specific components are extracted. Furthermore, common factors are able to capture not only regular dynamics (stationary or not) but also seasonal ones, by means of the common factors following a multiplicative seasonal VARIMA(p, d, q) × (P, D, Q)s model. Additionally, a bootstrap procedure that does not need a backward representation of the model is proposed to be able to make inference for all the parameters in the model. A bootstrap scheme developed for forecasting includes uncertainty due to parameter estimation, allowing enhanced coverage of forecasting intervals. A challenging application is provided. The new proposed model and a bootstrap scheme are applied to an innovative subject in electricity markets: the computation of long-term point forecasts and prediction intervals of electricity prices. Several appendices with technical details, an illustrative example, and an additional table are available online as Supplementary Materials.
Resumo:
To study the fluid motion-vehicle dynamics interaction, a model of four, liquid filled two-axle container freight wagons was set up. The railway vehicle has been modelled as a multi-body system (MBS). To include fluid sloshing, an equivalent mechanical model has been developed and incorporated. The influence of several factors has been studied in computer simulations, such as track defects, curve negotiation, train velocity, wheel wear, liquid and solid wagonload, and container baffles. SIMPACK has been used for MBS analysis, and ANSYS for liquid sloshing modelling and equivalent mechanical systems validation. Acceleration and braking manoeuvres of the freight train set the liquid cargo into motion. This longitudinal sloshing motion of the fluid cargo inside the tanks initiated a swinging motion of some components of the coupling gear. The coupling gear consists of UIC standard traction hooks and coupling screws that are located between buffers. One of the coupling screws is placed in the traction hook of the opposite wagon thus joining the two wagons, whereas the unused coupling screw rests on a hanger. Simulation results showed that, for certain combinations of type of liquid, filling level and container dimensions, the liquid cargo could provoke an undesirable, although not hazardous, release of the unused coupling screw from its hanger. The coupling screw's release was especially obtained when a period of acceleration was followed by an abrupt braking manoeuvre at 1 m/s2. It was shown that a resonance effect between the liquid's oscillation and the coupling screw's rotary motion could be the reason for the coupling screw's undesired release. Possible solutions to avoid the phenomenon are given.Acceleration and braking manoeuvres of the freight train set the liquid cargo into motion. This longitudinal sloshing motion of the fluid cargo inside the tanks initiated a swinging motion of some components of the coupling gear. The coupling gear consists of UIC standard traction hooks and coupling screws that are located between buffers. One of the coupling screws is placed in the traction hook of the opposite wagon thus joining the two wagons, whereas the unused coupling screw rests on a hanger. This paper reports on a study of the fluid motion-train vehicle dynamics interaction. In the study, a model of four, liquid-filled two-axle container freight wagons was developed. The railway vehicle has been modeled as a multi-body system (MBS). To include fluid sloshing, an equivalent mechanical model has been developed and incorporated. The influence of several factors has been studied in computer simulations, such as track defects, curve negotiation, train velocity, wheel wear, liquid and solid wagonload, and container baffles. A simulation program was used for MBS analysis, and a finite element analysis program was used for liquid sloshing modeling and equivalent mechanical systems validation. Acceleration and braking maneuvers of the freight train set the liquid cargo into motion. This longitudinal sloshing motion of the fluid cargo inside the tanks initiated a swinging motion of some components of the coupling gear. Simulation results showed that, for certain combinations of type of liquid, filling level and container dimensions, the liquid cargo could provoke an undesirable, although not hazardous, release of an unused coupling screw from its hanger. It was shown that a resonance effect between the liquid's oscillation and the coupling screw's rotary motion could be the reason for the coupling screw's undesired release. Solutions are suggested to avoid the resonance problem, and directions for future research are given.
Resumo:
Probabilistic modeling is the de�ning characteristic of estimation of distribution algorithms (EDAs) which determines their behavior and performance in optimization. Regularization is a well-known statistical technique used for obtaining an improved model by reducing the generalization error of estimation, especially in high-dimensional problems. `1-regularization is a type of this technique with the appealing variable selection property which results in sparse model estimations. In this thesis, we study the use of regularization techniques for model learning in EDAs. Several methods for regularized model estimation in continuous domains based on a Gaussian distribution assumption are presented, and analyzed from di�erent aspects when used for optimization in a high-dimensional setting, where the population size of EDA has a logarithmic scale with respect to the number of variables. The optimization results obtained for a number of continuous problems with an increasing number of variables show that the proposed EDA based on regularized model estimation performs a more robust optimization, and is able to achieve signi�cantly better results for larger dimensions than other Gaussian-based EDAs. We also propose a method for learning a marginally factorized Gaussian Markov random �eld model using regularization techniques and a clustering algorithm. The experimental results show notable optimization performance on continuous additively decomposable problems when using this model estimation method. Our study also covers multi-objective optimization and we propose joint probabilistic modeling of variables and objectives in EDAs based on Bayesian networks, speci�cally models inspired from multi-dimensional Bayesian network classi�ers. It is shown that with this approach to modeling, two new types of relationships are encoded in the estimated models in addition to the variable relationships captured in other EDAs: objectivevariable and objective-objective relationships. An extensive experimental study shows the e�ectiveness of this approach for multi- and many-objective optimization. With the proposed joint variable-objective modeling, in addition to the Pareto set approximation, the algorithm is also able to obtain an estimation of the multi-objective problem structure. Finally, the study of multi-objective optimization based on joint probabilistic modeling is extended to noisy domains, where the noise in objective values is represented by intervals. A new version of the Pareto dominance relation for ordering the solutions in these problems, namely �-degree Pareto dominance, is introduced and its properties are analyzed. We show that the ranking methods based on this dominance relation can result in competitive performance of EDAs with respect to the quality of the approximated Pareto sets. This dominance relation is then used together with a method for joint probabilistic modeling based on `1-regularization for multi-objective feature subset selection in classi�cation, where six di�erent measures of accuracy are considered as objectives with interval values. The individual assessment of the proposed joint probabilistic modeling and solution ranking methods on datasets with small-medium dimensionality, when using two di�erent Bayesian classi�ers, shows that comparable or better Pareto sets of feature subsets are approximated in comparison to standard methods.
Resumo:
This paper describes a novel approach to phonotactic LID, where instead of using soft-counts based on phoneme lattices, we use posteriogram to obtain n-gram counts. The high-dimensional vectors of counts are reduced to low-dimensional units for which we adapted the commonly used term i-vectors. The reduction is based on multinomial subspace modeling and is designed to work in the total-variability space. The proposed technique was tested on the NIST 2009 LRE set with better results to a system based on using soft-counts (Cavg on 30s: 3.15% vs 3.43%), and with very good results when fused with an acoustic i-vector LID system (Cavg on 30s acoustic 2.4% vs 1.25%). The proposed technique is also compared with another low dimensional projection system based on PCA. In comparison with the original soft-counts, the proposed technique provides better results, reduces the problems due to sparse counts, and avoids the process of using pruning techniques when creating the lattices.
Resumo:
Desde la aparición del turborreactor, el motor aeróbico con turbomaquinaria ha demostrado unas prestaciones excepcionales en los regímenes subsónico y supersónico bajo. No obstante, la operación a velocidades superiores requiere sistemas más complejos y pesados, lo cual ha imposibilitado la ejecución de estos conceptos. Los recientes avances tecnológicos, especialmente en materiales ligeros, han restablecido el interés por los motores de ciclo combinado. La simulación numérica de estos nuevos conceptos es esencial para estimar las prestaciones de la planta propulsiva, así como para abordar las dificultades de integración entre célula y motor durante las primeras etapas de diseño. Al mismo tiempo, la evaluación de estos extraordinarios motores requiere una metodología de análisis distinta. La tesis doctoral versa sobre el diseño y el análisis de los mencionados conceptos propulsivos mediante el modelado numérico y la simulación dinámica con herramientas de vanguardia. Las distintas arquitecturas presentadas por los ciclos combinados basados en sendos turborreactor y motor cohete, así como los diversos sistemas comprendidos en cada uno de ellos, hacen necesario establecer una referencia común para su evaluación. Es más, la tendencia actual hacia aeronaves "más eléctricas" requiere una nueva métrica para juzgar la aptitud de un proceso de generación de empuje en el que coexisten diversas formas de energía. A este respecto, la combinación del Primer y Segundo Principios define, en un marco de referencia absoluto, la calidad de la trasferencia de energía entre los diferentes sistemas. Esta idea, que se ha estado empleando desde hace mucho tiempo en el análisis de plantas de potencia terrestres, ha sido extendida para relacionar la misión de la aeronave con la ineficiencia de cada proceso involucrado en la generación de empuje. La metodología se ilustra mediante el estudio del motor de ciclo combinado variable de una aeronave para el crucero a Mach 5. El diseño de un acelerador de ciclo combinado basado en el turborreactor sirve para subrayar la importancia de la integración del motor y la célula. El diseño está limitado por la trayectoria ascensional y el espacio disponible en la aeronave de crucero supersónico. Posteriormente se calculan las prestaciones instaladas de la planta propulsiva en función de la velocidad y la altitud de vuelo y los parámetros de control del motor: relación de compresión, relación aire/combustible y área de garganta. ABSTRACT Since the advent of the turbojet, the air-breathing engine with rotating machinery has demonstrated exceptional performance in the subsonic and low supersonic regimes. However, the operation at higher speeds requires further system complexity and weight, which so far has impeded the realization of these concepts. Recent technology developments, especially in lightweight materials, have restored the interest towards combined-cycle engines. The numerical simulation of these new concepts is essential at the early design stages to compute a first estimate of the engine performance in addition to addressing airframe-engine integration issues. In parallel, a different analysis methodology is required to evaluate these unconventional engines. The doctoral thesis concerns the design and analysis of the aforementioned engine concepts by means of numerical modeling and dynamic simulation with state-of-the-art tools. A common reference is needed to evaluate the different architectures of the turbine and the rocket-based combined-cycle engines as well as the various systems within each one of them. Furthermore, the actual trend towards more electric aircraft necessitates a common metric to judge the suitability of a thrust generation process where different forms of energy coexist. In line with this, the combination of the First and the Second Laws yields the quality of the energy being transferred between the systems on an absolute reference frame. This idea, which has been since long applied to the analysis of on-ground power plants, was extended here to relate the aircraft mission with the inefficiency of every process related to the thrust generation. The methodology is illustrated with the study of a variable- combined-cycle engine for a Mach 5 cruise aircraft. The design of a turbine-based combined-cycle booster serves to highlight the importance of the engine-airframe integration. The design is constrained by the ascent trajectory and the allocated space in the supersonic cruise aircraft. The installed performance of the propulsive plant is then computed as a function of the flight speed and altitude and the engine control parameters: pressure ratio, air-to-fuel ratio and throat area.
Resumo:
Nowadays, Software Product Line (SPL) engineering [1] has been widely-adopted in software development due to the significant improvements that has provided, such as reducing cost and time-to-market and providing flexibility to respond to planned changes [2]. SPL takes advantage of common features among the products of a family through the systematic reuse of the core-assets and the effective management of variabilities across the products. SPL features are realized at the architectural level in product-line architecture (PLA) models. Therefore, suitable modeling and specification techniques are required to model variability. In fact, architectural variability modeling has become a challenge for SPLE due to the fact that PLA modeling requires not only modeling variability at the level of the external architecture configuration (see [3,4] literature reviews), but also at the level of internal specification of components [5]. In addition, PLA modeling requires preserving the traceability between features and PLAs. Finally, it is important to take into account that PLA modeling should guide architects in modeling the PLA core assets and variability, and in deriving the customized products. To deal with these needs, we present in this demonstration the FPLA Modeling Framework.
Resumo:
We recover and develop some robotic systems concepts (on the light of present systems tools) that were originated for an intended Mars Rover in the sixties of the last century at the Instrumentation Laboratory of MIT, where one of the authors was involved. The basic concepts came from the specifications for a type of generalized robot inspired in the structure of the vertebrate nervous systems, where the decision system was based in the structure and function of the Reticular Formation (RF). The vertebrate RF is supposed to commit the whole organism to one among various modes of behavior, so taking the decisions about the present overall task. That is, it is a kind of control and command system. In this concepts updating, the basic idea is that the RF comprises a set of computing units such that each computing module receives information only from a reduced part of the overall, little processed sensory inputs. Each computing unit is capable of both general diagnostics about overall input situations and of specialized diagnostics according to the values of a concrete subset of the input lines. Slave systems to this command and control computer, there are the sensors, the representations of external environment, structures for modeling and planning and finally, the effectors acting in the external world.
Resumo:
Mechanical degradation of tungsten alloys at extreme temperatures in vacuum and oxidation atmospheres.
Resumo:
Los accidentes del tráfico son un fenómeno social muy relevantes y una de las principales causas de mortalidad en los países desarrollados. Para entender este fenómeno complejo se aplican modelos econométricos sofisticados tanto en la literatura académica como por las administraciones públicas. Esta tesis está dedicada al análisis de modelos macroscópicos para los accidentes del tráfico en España. El objetivo de esta tesis se puede dividir en dos bloques: a. Obtener una mejor comprensión del fenómeno de accidentes de trafico mediante la aplicación y comparación de dos modelos macroscópicos utilizados frecuentemente en este área: DRAG y UCM, con la aplicación a los accidentes con implicación de furgonetas en España durante el período 2000-2009. Los análisis se llevaron a cabo con enfoque frecuencista y mediante los programas TRIO, SAS y TRAMO/SEATS. b. La aplicación de modelos y la selección de las variables más relevantes, son temas actuales de investigación y en esta tesis se ha desarrollado y aplicado una metodología que pretende mejorar, mediante herramientas teóricas y prácticas, el entendimiento de selección y comparación de los modelos macroscópicos. Se han desarrollado metodologías tanto para selección como para comparación de modelos. La metodología de selección de modelos se ha aplicado a los accidentes mortales ocurridos en la red viaria en el período 2000-2011, y la propuesta metodológica de comparación de modelos macroscópicos se ha aplicado a la frecuencia y la severidad de los accidentes con implicación de furgonetas en el período 2000-2009. Como resultado de los desarrollos anteriores se resaltan las siguientes contribuciones: a. Profundización de los modelos a través de interpretación de las variables respuesta y poder de predicción de los modelos. El conocimiento sobre el comportamiento de los accidentes con implicación de furgonetas se ha ampliado en este proceso. bl. Desarrollo de una metodología para selección de variables relevantes para la explicación de la ocurrencia de accidentes de tráfico. Teniendo en cuenta los resultados de a) la propuesta metodológica se basa en los modelos DRAG, cuyos parámetros se han estimado con enfoque bayesiano y se han aplicado a los datos de accidentes mortales entre los años 2000-2011 en España. Esta metodología novedosa y original se ha comparado con modelos de regresión dinámica (DR), que son los modelos más comunes para el trabajo con procesos estocásticos. Los resultados son comparables, y con la nueva propuesta se realiza una aportación metodológica que optimiza el proceso de selección de modelos, con escaso coste computacional. b2. En la tesis se ha diseñado una metodología de comparación teórica entre los modelos competidores mediante la aplicación conjunta de simulación Monte Cario, diseño de experimentos y análisis de la varianza ANOVA. Los modelos competidores tienen diferentes estructuras, que afectan a la estimación de efectos de las variables explicativas. Teniendo en cuenta el estudio desarrollado en bl) este desarrollo tiene el propósito de determinar como interpretar la componente de tendencia estocástica que un modelo UCM modela explícitamente, a través de un modelo DRAG, que no tiene un método específico para modelar este elemento. Los resultados de este estudio son importantes para ver si la serie necesita ser diferenciada antes de modelar. b3. Se han desarrollado nuevos algoritmos para realizar los ejercicios metodológicos, implementados en diferentes programas como R, WinBUGS, y MATLAB. El cumplimiento de los objetivos de la tesis a través de los desarrollos antes enunciados se remarcan en las siguientes conclusiones: 1. El fenómeno de accidentes del tráfico se ha analizado mediante dos modelos macroscópicos. Los efectos de los factores de influencia son diferentes dependiendo de la metodología aplicada. Los resultados de predicción son similares aunque con ligera superioridad de la metodología DRAG. 2. La metodología para selección de variables y modelos proporciona resultados prácticos en cuanto a la explicación de los accidentes de tráfico. La predicción y la interpretación también se han mejorado mediante esta nueva metodología. 3. Se ha implementado una metodología para profundizar en el conocimiento de la relación entre las estimaciones de los efectos de dos modelos competidores como DRAG y UCM. Un aspecto muy importante en este tema es la interpretación de la tendencia mediante dos modelos diferentes de la que se ha obtenido información muy útil para los investigadores en el campo del modelado. Los resultados han proporcionado una ampliación satisfactoria del conocimiento en torno al proceso de modelado y comprensión de los accidentes con implicación de furgonetas y accidentes mortales totales en España. ABSTRACT Road accidents are a very relevant social phenomenon and one of the main causes of death in industrialized countries. Sophisticated econometric models are applied in academic work and by the administrations for a better understanding of this very complex phenomenon. This thesis is thus devoted to the analysis of macro models for road accidents with application to the Spanish case. The objectives of the thesis may be divided in two blocks: a. To achieve a better understanding of the road accident phenomenon by means of the application and comparison of two of the most frequently used macro modelings: DRAG (demand for road use, accidents and their gravity) and UCM (unobserved components model); the application was made to van involved accident data in Spain in the period 2000-2009. The analysis has been carried out within the frequentist framework and using available state of the art software, TRIO, SAS and TRAMO/SEATS. b. Concern on the application of the models and on the relevant input variables to be included in the model has driven the research to try to improve, by theoretical and practical means, the understanding on methodological choice and model selection procedures. The theoretical developments have been applied to fatal accidents during the period 2000-2011 and van-involved road accidents in 2000-2009. This has resulted in the following contributions: a. Insight on the models has been gained through interpretation of the effect of the input variables on the response and prediction accuracy of both models. The behavior of van-involved road accidents has been explained during this process. b1. Development of an input variable selection procedure, which is crucial for an efficient choice of the inputs. Following the results of a) the procedure uses the DRAG-like model. The estimation is carried out within the Bayesian framework. The procedure has been applied for the total road accident data in Spain in the period 2000-2011. The results of the model selection procedure are compared and validated through a dynamic regression model given that the original data has a stochastic trend. b2. A methodology for theoretical comparison between the two models through Monte Carlo simulation, computer experiment design and ANOVA. The models have a different structure and this affects the estimation of the effects of the input variables. The comparison is thus carried out in terms of the effect of the input variables on the response, which is in general different, and should be related. Considering the results of the study carried out in b1) this study tries to find out how a stochastic time trend will be captured in DRAG model, since there is no specific trend component in DRAG. Given the results of b1) the findings of this study are crucial in order to see if the estimation of data with stochastic component through DRAG will be valid or whether the data need a certain adjustment (typically differencing) prior to the estimation. The model comparison methodology was applied to the UCM and DRAG models, considering that, as mentioned above, the UCM has a specific trend term while DRAG does not. b3. New algorithms were developed for carrying out the methodological exercises. For this purpose different softwares, R, WinBUGs and MATLAB were used. These objectives and contributions have been resulted in the following findings: 1. The road accident phenomenon has been analyzed by means of two macro models: The effects of the influential input variables may be estimated through the models, but it has been observed that the estimates vary from one model to the other, although prediction accuracy is similar, with a slight superiority of the DRAG methodology. 2. The variable selection methodology provides very practical results, as far as the explanation of road accidents is concerned. Prediction accuracy and interpretability have been improved by means of a more efficient input variable and model selection procedure. 3. Insight has been gained on the relationship between the estimates of the effects using the two models. A very relevant issue here is the role of trend in both models, relevant recommendations for the analyst have resulted from here. The results have provided a very satisfactory insight into both modeling aspects and the understanding of both van-involved and total fatal accidents behavior in Spain.
Resumo:
El enriquecimiento del conocimiento sobre la Irradiancia Solar (IS) a nivel de superficie terrestre, así como su predicción, cobran gran interés para las Energías Renovables (ER) - Energía Solar (ES)-, y para distintas aplicaciones industriales o ecológicas. En el ámbito de las ER, el uso óptimo de la ES implica contar con datos de la IS en superficie que ayuden tanto, en la selección de emplazamientos para instalaciones de ES, como en su etapa de diseño (dimensionar la producción) y, finalmente, en su explotación. En este último caso, la observación y la predicción es útil para el mercado energético, la planificación y gestión de la energía (generadoras y operadoras del sistema eléctrico), especialmente en los nuevos contextos de las redes inteligentes de transporte. A pesar de la importancia estratégica de contar con datos de la IS, especialmente los observados por sensores de IS en superficie (los que mejor captan esta variable), estos no siempre están disponibles para los lugares de interés ni con la resolución espacial y temporal deseada. Esta limitación se une a la necesidad de disponer de predicciones a corto plazo de la IS que ayuden a la planificación y gestión de la energía. Se ha indagado y caracterizado las Redes de Estaciones Meteorológicas (REM) existentes en España que publican en internet sus observaciones, focalizando en la IS. Se han identificado 24 REM (16 gubernamentales y 8 redes voluntarios) que aglutinan 3492 estaciones, convirtiéndose éstas en las fuentes de datos meteorológicos utilizados en la tesis. Se han investigado cinco técnicas de estimación espacial de la IS en intervalos de 15 minutos para el territorio peninsular (3 técnicas geoestadísticas, una determinística y el método HelioSat2 basado en imágenes satelitales) con distintas configuraciones espaciales. Cuando el área de estudio tiene una adecuada densidad de observaciones, el mejor método identificado para estimar la IS es el Kriging con Regresión usando variables auxiliares -una de ellas la IS estimada a partir de imágenes satelitales-. De este modo es posible estimar espacialmente la IS más allá de los 25 km identificados en la bibliografía. En caso contrario, se corrobora la idoneidad de utilizar estimaciones a partir de sensores remotos cuando la densidad de observaciones no es adecuada. Se ha experimentado con el modelado de Redes Neuronales Artificiales (RNA) para la predicción a corto plazo de la IS utilizando observaciones próximas (componentes espaciales) en sus entradas y, los resultados son prometedores. Así los niveles de errores disminuyen bajo las siguientes condiciones: (1) cuando el horizonte temporal de predicción es inferior o igual a 3 horas, las estaciones vecinas que se incluyen en el modelo deben encentrarse a una distancia máxima aproximada de 55 km. Esto permite concluir que las RNA son capaces de aprender cómo afectan las condiciones meteorológicas vecinas a la predicción de la IS. ABSTRACT ABSTRACT The enrichment of knowledge about the Solar Irradiance (SI) at Earth's surface and its prediction, have a high interest for Renewable Energy (RE) - Solar Energy (SE) - and for various industrial and environmental applications. In the field of the RE, the optimal use of the SE involves having SI surface to help in the selection of sites for facilities ES, in the design stage (sizing energy production), and finally on their production. In the latter case, the observation and prediction is useful for the market, planning and management of the energy (generators and electrical system operators), especially in new contexts of smart transport networks (smartgrid). Despite the strategic importance of SI data, especially those observed by sensors of SI at surface (the ones that best measure this environmental variable), these are not always available to the sights and the spatial and temporal resolution desired. This limitation is bound to the need for short-term predictions of the SI to help planning and energy management. It has been investigated and characterized existing Networks of Weather Stations (NWS) in Spain that share its observations online, focusing on SI. 24 NWS have been identified (16 government and 8 volunteer networks) that implies 3492 stations, turning it into the sources of meteorological data used in the thesis. We have investigated five technical of spatial estimation of SI in 15 minutes to the mainland (3 geostatistical techniques and HelioSat2 a deterministic method based on satellite images) with different spatial configurations. When the study area has an adequate density of observations we identified the best method to estimate the SI is the regression kriging with auxiliary variables (one of them is the SI estimated from satellite images. Thus it is possible to spatially estimate the SI beyond the 25 km identified in the literature. Otherwise, when the density of observations is inadequate the appropriateness is using the estimates values from remote sensing. It has been experimented with Artificial Neural Networks (ANN) modeling for predicting the short-term future of the SI using observations from neighbor’s weather stations (spatial components) in their inputs, and the results are promising. The error levels decrease under the following conditions: (1) when the prediction horizon is less or equal than 3 hours the best models are the ones that include data from the neighboring stations (at a maximum distance of 55 km). It is concluded that the ANN is able to learn how weather conditions affect neighboring prediction of IS at such Spatio-temporal horizons.
Resumo:
This special issue gathers together a number of recent papers on fractal geometry and its applications to the modeling of flow and transport in porous media. The aim is to provide a systematic approach for analyzing the statics and dynamics of fluids in fractal porous media by means of theory, modeling and experimentation. The topics covered include lacunarity analyses of multifractal and natural grayscale patterns, random packing's of self-similar pore/particle size distributions, Darcian and non-Darcian hydraulic flows, diffusion within fractals, models for the permeability and thermal conductivity of fractal porous media and hydrophobicity and surface erosion properties of fractal structures.
Resumo:
This paper presents the implementation of a robust grasp mapping between a 3-finger haptic device (master) and a robotic hand (slave). Mapping is based on a grasp equivalence defined considering the manipulation capabilities of the master and slave devices. The metrics that translate the human hand gesture to the robotic hand workspace are obtained through an analytical user study. This allows a natural control of the robotic hand. The grasp mapping is accomplished defining 4 control modes that encapsulate all the grasps gestures considered.
A methodology to analyze, design and implement very fast and robust controls of Buck-type converters
Resumo:
La electrónica digital moderna presenta un desafío a los diseñadores de sistemas de potencia. El creciente alto rendimiento de microprocesadores, FPGAs y ASICs necesitan sistemas de alimentación que cumplan con requirimientos dinámicos y estáticos muy estrictos. Específicamente, estas alimentaciones son convertidores DC-DC de baja tensión y alta corriente que necesitan ser diseñados para tener un pequeño rizado de tensión y una pequeña desviación de tensión de salida bajo transitorios de carga de una alta pendiente. Además, dependiendo de la aplicación, se necesita cumplir con otros requerimientos tal y como proveer a la carga con ”Escalado dinámico de tensión”, donde el convertidor necesitar cambiar su tensión de salida tan rápidamente posible sin sobreoscilaciones, o ”Posicionado Adaptativo de la Tensión” donde la tensión de salida se reduce ligeramente cuanto más grande sea la potencia de salida. Por supuesto, desde el punto de vista de la industria, las figuras de mérito de estos convertidores son el coste, la eficiencia y el tamaño/peso. Idealmente, la industria necesita un convertidor que es más barato, más eficiente, más pequeño y que aún así cumpla con los requerimienos dinámicos de la aplicación. En este contexto, varios enfoques para mejorar la figuras de mérito de estos convertidores se han seguido por la industria y la academia tales como mejorar la topología del convertidor, mejorar la tecnología de semiconducores y mejorar el control. En efecto, el control es una parte fundamental en estas aplicaciones ya que un control muy rápido hace que sea más fácil que una determinada topología cumpla con los estrictos requerimientos dinámicos y, consecuentemente, le da al diseñador un margen de libertar más amplio para mejorar el coste, la eficiencia y/o el tamaño del sistema de potencia. En esta tesis, se investiga cómo diseñar e implementar controles muy rápidos para el convertidor tipo Buck. En esta tesis se demuestra que medir la tensión de salida es todo lo que se necesita para lograr una respuesta casi óptima y se propone una guía de diseño unificada para controles que sólo miden la tensión de salida Luego, para asegurar robustez en controles muy rápidos, se proponen un modelado y un análisis de estabilidad muy precisos de convertidores DC-DC que tienen en cuenta circuitería para sensado y elementos parásitos críticos. También, usando este modelado, se propone una algoritmo de optimización que tiene en cuenta las tolerancias de los componentes y sensados distorsionados. Us ando este algoritmo, se comparan controles muy rápidos del estado del arte y su capacidad para lograr una rápida respuesta dinámica se posiciona según el condensador de salida utilizado. Además, se propone una técnica para mejorar la respuesta dinámica de los controladores. Todas las propuestas se han corroborado por extensas simulaciones y prototipos experimentales. Con todo, esta tesis sirve como una metodología para ingenieros para diseñar e implementar controles rápidos y robustos de convertidores tipo Buck. ABSTRACT Modern digital electronics present a challenge to designers of power systems. The increasingly high-performance of microprocessors, FPGAs (Field Programmable Gate Array) and ASICs (Application-Specific Integrated Circuit) require power supplies to comply with very demanding static and dynamic requirements. Specifically, these power supplies are low-voltage/high-current DC-DC converters that need to be designed to exhibit low voltage ripple and low voltage deviation under high slew-rate load transients. Additionally, depending on the application, other requirements need to be met such as to provide to the load ”Dynamic Voltage Scaling” (DVS), where the converter needs to change the output voltage as fast as possible without underdamping, or ”Adaptive Voltage Positioning” (AVP) where the output voltage is slightly reduced the greater the output power. Of course, from the point of view of the industry, the figures of merit of these converters are the cost, efficiency and size/weight. Ideally, the industry needs a converter that is cheaper, more efficient, smaller and that can still meet the dynamic requirements of the application. In this context, several approaches to improve the figures of merit of these power supplies are followed in the industry and academia such as improving the topology of the converter, improving the semiconductor technology and improving the control. Indeed, the control is a fundamental part in these applications as a very fast control makes it easier for the topology to comply with the strict dynamic requirements and, consequently, gives the designer a larger margin of freedom to improve the cost, efficiency and/or size of the power supply. In this thesis, how to design and implement very fast controls for the Buck converter is investigated. This thesis proves that sensing the output voltage is all that is needed to achieve an almost time-optimal response and a unified design guideline for controls that only sense the output voltage is proposed. Then, in order to assure robustness in very fast controls, a very accurate modeling and stability analysis of DC-DC converters is proposed that takes into account sensing networks and critical parasitic elements. Also, using this modeling approach, an optimization algorithm that takes into account tolerances of components and distorted measurements is proposed. With the use of the algorithm, very fast analog controls of the state-of-the-art are compared and their capabilities to achieve a fast dynamic response are positioned de pending on the output capacitor. Additionally, a technique to improve the dynamic response of controllers is also proposed. All the proposals are corroborated by extensive simulations and experimental prototypes. Overall, this thesis serves as a methodology for engineers to design and implement fast and robust controls for Buck-type converters.
Resumo:
In this paper we present a solution for building a better strategy to take part in external electricity markets. For an optimal strategy development, both the internal system costs as well as the future values of the series of electricity prices in external markets need to be known. But in practice, the real problems that must be faced are that both future electricity prices and costs are unknown. Thus, the first ones must be modeled and forecasted and the costs must be calculated. Our methodology for building an optimal strategy consists of three steps: The first step is modeling and forecasting market prices in external systems. The second step is the cost calculation on internal system taking into account the expected prices in the first step. The third step is based on the results of the previous steps, and consists of preparing the bids for external markets. The main goal is to reduce consumers' costs unlike many others that are oriented to increase GenCo's profits.
Resumo:
Los Centros de Datos se encuentran actualmente en cualquier sector de la economía mundial. Están compuestos por miles de servidores, dando servicio a los usuarios de forma global, las 24 horas del día y los 365 días del año. Durante los últimos años, las aplicaciones del ámbito de la e-Ciencia, como la e-Salud o las Ciudades Inteligentes han experimentado un desarrollo muy significativo. La necesidad de manejar de forma eficiente las necesidades de cómputo de aplicaciones de nueva generación, junto con la creciente demanda de recursos en aplicaciones tradicionales, han facilitado el rápido crecimiento y la proliferación de los Centros de Datos. El principal inconveniente de este aumento de capacidad ha sido el rápido y dramático incremento del consumo energético de estas infraestructuras. En 2010, la factura eléctrica de los Centros de Datos representaba el 1.3% del consumo eléctrico mundial. Sólo en el año 2012, el consumo de potencia de los Centros de Datos creció un 63%, alcanzando los 38GW. En 2013 se estimó un crecimiento de otro 17%, hasta llegar a los 43GW. Además, los Centros de Datos son responsables de más del 2% del total de emisiones de dióxido de carbono a la atmósfera. Esta tesis doctoral se enfrenta al problema energético proponiendo técnicas proactivas y reactivas conscientes de la temperatura y de la energía, que contribuyen a tener Centros de Datos más eficientes. Este trabajo desarrolla modelos de energía y utiliza el conocimiento sobre la demanda energética de la carga de trabajo a ejecutar y de los recursos de computación y refrigeración del Centro de Datos para optimizar el consumo. Además, los Centros de Datos son considerados como un elemento crucial dentro del marco de la aplicación ejecutada, optimizando no sólo el consumo del Centro de Datos sino el consumo energético global de la aplicación. Los principales componentes del consumo en los Centros de Datos son la potencia de computación utilizada por los equipos de IT, y la refrigeración necesaria para mantener los servidores dentro de un rango de temperatura de trabajo que asegure su correcto funcionamiento. Debido a la relación cúbica entre la velocidad de los ventiladores y el consumo de los mismos, las soluciones basadas en el sobre-aprovisionamiento de aire frío al servidor generalmente tienen como resultado ineficiencias energéticas. Por otro lado, temperaturas más elevadas en el procesador llevan a un consumo de fugas mayor, debido a la relación exponencial del consumo de fugas con la temperatura. Además, las características de la carga de trabajo y las políticas de asignación de recursos tienen un impacto importante en los balances entre corriente de fugas y consumo de refrigeración. La primera gran contribución de este trabajo es el desarrollo de modelos de potencia y temperatura que permiten describes estos balances entre corriente de fugas y refrigeración; así como la propuesta de estrategias para minimizar el consumo del servidor por medio de la asignación conjunta de refrigeración y carga desde una perspectiva multivariable. Cuando escalamos a nivel del Centro de Datos, observamos un comportamiento similar en términos del balance entre corrientes de fugas y refrigeración. Conforme aumenta la temperatura de la sala, mejora la eficiencia de la refrigeración. Sin embargo, este incremente de la temperatura de sala provoca un aumento en la temperatura de la CPU y, por tanto, también del consumo de fugas. Además, la dinámica de la sala tiene un comportamiento muy desigual, no equilibrado, debido a la asignación de carga y a la heterogeneidad en el equipamiento de IT. La segunda contribución de esta tesis es la propuesta de técnicas de asigación conscientes de la temperatura y heterogeneidad que permiten optimizar conjuntamente la asignación de tareas y refrigeración a los servidores. Estas estrategias necesitan estar respaldadas por modelos flexibles, que puedan trabajar en tiempo real, para describir el sistema desde un nivel de abstracción alto. Dentro del ámbito de las aplicaciones de nueva generación, las decisiones tomadas en el nivel de aplicación pueden tener un impacto dramático en el consumo energético de niveles de abstracción menores, como por ejemplo, en el Centro de Datos. Es importante considerar las relaciones entre todos los agentes computacionales implicados en el problema, de forma que puedan cooperar para conseguir el objetivo común de reducir el coste energético global del sistema. La tercera contribución de esta tesis es el desarrollo de optimizaciones energéticas para la aplicación global por medio de la evaluación de los costes de ejecutar parte del procesado necesario en otros niveles de abstracción, que van desde los nodos hasta el Centro de Datos, por medio de técnicas de balanceo de carga. Como resumen, el trabajo presentado en esta tesis lleva a cabo contribuciones en el modelado y optimización consciente del consumo por fugas y la refrigeración de servidores; el modelado de los Centros de Datos y el desarrollo de políticas de asignación conscientes de la heterogeneidad; y desarrolla mecanismos para la optimización energética de aplicaciones de nueva generación desde varios niveles de abstracción. ABSTRACT Data centers are easily found in every sector of the worldwide economy. They consist of tens of thousands of servers, serving millions of users globally and 24-7. In the last years, e-Science applications such e-Health or Smart Cities have experienced a significant development. The need to deal efficiently with the computational needs of next-generation applications together with the increasing demand for higher resources in traditional applications has facilitated the rapid proliferation and growing of data centers. A drawback to this capacity growth has been the rapid increase of the energy consumption of these facilities. In 2010, data center electricity represented 1.3% of all the electricity use in the world. In year 2012 alone, global data center power demand grew 63% to 38GW. A further rise of 17% to 43GW was estimated in 2013. Moreover, data centers are responsible for more than 2% of total carbon dioxide emissions. This PhD Thesis addresses the energy challenge by proposing proactive and reactive thermal and energy-aware optimization techniques that contribute to place data centers on a more scalable curve. This work develops energy models and uses the knowledge about the energy demand of the workload to be executed and the computational and cooling resources available at data center to optimize energy consumption. Moreover, data centers are considered as a crucial element within their application framework, optimizing not only the energy consumption of the facility, but the global energy consumption of the application. The main contributors to the energy consumption in a data center are the computing power drawn by IT equipment and the cooling power needed to keep the servers within a certain temperature range that ensures safe operation. Because of the cubic relation of fan power with fan speed, solutions based on over-provisioning cold air into the server usually lead to inefficiencies. On the other hand, higher chip temperatures lead to higher leakage power because of the exponential dependence of leakage on temperature. Moreover, workload characteristics as well as allocation policies also have an important impact on the leakage-cooling tradeoffs. The first key contribution of this work is the development of power and temperature models that accurately describe the leakage-cooling tradeoffs at the server level, and the proposal of strategies to minimize server energy via joint cooling and workload management from a multivariate perspective. When scaling to the data center level, a similar behavior in terms of leakage-temperature tradeoffs can be observed. As room temperature raises, the efficiency of data room cooling units improves. However, as we increase room temperature, CPU temperature raises and so does leakage power. Moreover, the thermal dynamics of a data room exhibit unbalanced patterns due to both the workload allocation and the heterogeneity of computing equipment. The second main contribution is the proposal of thermal- and heterogeneity-aware workload management techniques that jointly optimize the allocation of computation and cooling to servers. These strategies need to be backed up by flexible room level models, able to work on runtime, that describe the system from a high level perspective. Within the framework of next-generation applications, decisions taken at this scope can have a dramatical impact on the energy consumption of lower abstraction levels, i.e. the data center facility. It is important to consider the relationships between all the computational agents involved in the problem, so that they can cooperate to achieve the common goal of reducing energy in the overall system. The third main contribution is the energy optimization of the overall application by evaluating the energy costs of performing part of the processing in any of the different abstraction layers, from the node to the data center, via workload management and off-loading techniques. In summary, the work presented in this PhD Thesis, makes contributions on leakage and cooling aware server modeling and optimization, data center thermal modeling and heterogeneityaware data center resource allocation, and develops mechanisms for the energy optimization for next-generation applications from a multi-layer perspective.