760 resultados para mode-locked lasers
Resumo:
With an increased emphasis on genotyping of single nucleotide polymorphisms (SNPs) in disease association studies, the genotyping platform of choice is constantly evolving. In addition, the development of more specific SNP assays and appropriate genotype validation applications is becoming increasingly critical to elucidate ambiguous genotypes. In this study, we have used SNP specific Locked Nucleic Acid (LNA) hybridization probes on a real-time PCR platform to genotype an association cohort and propose three criteria to address ambiguous genotypes. Based on the kinetic properties of PCR amplification, the three criteria address PCR amplification efficiency, the net fluorescent difference between maximal and minimal fluorescent signals and the beginning of the exponential growth phase of the reaction. Initially observed SNP allelic discrimination curves were confirmed by DNA sequencing (n = 50) and application of our three genotype criteria corroborated both sequencing and observed real-time PCR results. In addition, the tested Caucasian association cohort was in Hardy-Weinberg equilibrium and observed allele frequencies were very similar to two independently tested Caucasian association cohorts for the same tested SNP. We present here a novel approach to effectively determine ambiguous genotypes generated from a real-time PCR platform. Application of our three novel criteria provides an easy to use semi-automated genotype confirmation protocol.
Resumo:
A Switch-Mode Assisted Linear Amplifier (SMALA) combines the high quality of a linear amplifier required for audio applications with the high efficiency of a switch-mode amplifier. The careful choice of current sense point and switch placement allows a simple non-isolated hysteresis current controller for the switch-mode section. This paper explains the extension of the hysteresis current controller for the control of a three level Neutral Point Clamped (NPC) converter, with simulations as proof of concept. The NPC topology allows the use of lower voltage switches and lower switching frequencies to implement high power audio amplifiers using the SMALA topology.
Resumo:
Indium tin-oxide (ITO) and polycrystalline boron-doped diamond (BDD) have been examined in detail using the scanning electrochemical microscopy technique in feedback mode. For the interrogation of electrodes made from these materials, the choice of mediator has been varied. Using Ru(CN) 4− 6 (aq), ferrocene methanol (FcMeOH), Fe(CN) 3− 6 (aq) and Ru(NH 3) 3+ 6 (aq), approach curve experiments have been performed, and for purposes of comparison, calculations of the apparent heterogeneous electron transfer rates (k app) have been made using these data. In general, it would appear that values of k app are affected mainly by the position of the mediator reversible potential relative to the relevant semiconductor band edge (associated with majority carriers). For both the ITO (n type) and BDD (p type) electrodes, charge transfer is impeded and values are very low when using FcMeOH and Fe(CN) 3− 6 (aq) as mediators, and the use of Ru(NH 3) 3+ 6(aq) results in the largest value of k app. With ITO, the surface is chemically homogeneous and no variation is observed for any given mediator. Data is also presented where the potential of the ITO electrode is fixed using a ratio of the mediators Fe(CN) 3− 6(aq) and Fe(CN) 4− 6(aq). In stark contrast, the BDD electrode is quite the opposite and a range of k app values are observed for all mediators depending on the position on the surface. Both electrode surfaces are very flat and very smooth, and hence, for BDD, variations in feedback current imply a variation in the electrochemical activity. A comparison of the feedback current where the substrate is biased and unbiased shows a surprising degree of proportionality.
Resumo:
The charge transfer-mediated surface enhanced Raman scattering (SERS) of crystal violet (CV) molecules that were chemically conjugated between partially polarized silver nanoparticles and optically smooth gold and silver substrates has been studied under off-resonant conditions. Tyrosine molecules were used as a reducing agent to convert silver ions into silver nanoparticles where oxidised tyrosine caps the silver nanoparticle surface with its semiquinone group. This binding through the quinone group facilitates charge transfer and results in partially oxidised silver. This establishes a chemical link between the silver nanoparticles and the CV molecules, where the positively charged central carbon of CV molecules can bind to the terminal carboxylate anion of the oxidised tyrosine molecules. After drop casting Ag nanoparticles bound with CV molecules it was found that the free terminal amine groups tend to bind with the underlying substrates. Significantly, only those CV molecules that were chemically conjugated between the partially polarised silver nanoparticles and the underlying gold or silver substrates were found to show SERS under off-resonant conditions. The importance of partial charge transfer at the nanoparticle/capping agent interface and the resultant conjugation of CV molecules to off resonant SERS effects was confirmed by using gold nanoparticles prepared in a similar manner. In this case the capping agent binds to the nanoparticle through the amine group which does not facilitate charge transfer from the gold nanoparticle and under these conditions SERS enhancement in the sandwich configuration was not observed.
Resumo:
Diagnostics is based on the characterization of mechanical system condition and allows early detection of a possible fault. Signal processing is an approach widely used in diagnostics, since it allows directly characterizing the state of the system. Several types of advanced signal processing techniques have been proposed in the last decades and added to more conventional ones. Seldom, these techniques are able to consider non-stationary operations. Diagnostics of roller bearings is not an exception of this framework. In this paper, a new vibration signal processing tool, able to perform roller bearing diagnostics in whatever working condition and noise level, is developed on the basis of two data-adaptive techniques as Empirical Mode Decomposition (EMD), Minimum Entropy Deconvolution (MED), coupled by means of the mathematics related to the Hilbert transform. The effectiveness of the new signal processing tool is proven by means of experimental data measured in a test-rig that employs high power industrial size components.
Resumo:
Currently, the GNSS computing modes are of two classes: network-based data processing and user receiver-based processing. A GNSS reference receiver station essentially contributes raw measurement data in either the RINEX file format or as real-time data streams in the RTCM format. Very little computation is carried out by the reference station. The existing network-based processing modes, regardless of whether they are executed in real-time or post-processed modes, are centralised or sequential. This paper describes a distributed GNSS computing framework that incorporates three GNSS modes: reference station-based, user receiver-based and network-based data processing. Raw data streams from each GNSS reference receiver station are processed in a distributed manner, i.e., either at the station itself or at a hosting data server/processor, to generate station-based solutions, or reference receiver-specific parameters. These may include precise receiver clock, zenith tropospheric delay, differential code biases, ambiguity parameters, ionospheric delays, as well as line-of-sight information such as azimuth and elevation angles. Covariance information for estimated parameters may also be optionally provided. In such a mode the nearby precise point positioning (PPP) or real-time kinematic (RTK) users can directly use the corrections from all or some of the stations for real-time precise positioning via a data server. At the user receiver, PPP and RTK techniques are unified under the same observation models, and the distinction is how the user receiver software deals with corrections from the reference station solutions and the ambiguity estimation in the observation equations. Numerical tests demonstrate good convergence behaviour for differential code bias and ambiguity estimates derived individually with single reference stations. With station-based solutions from three reference stations within distances of 22–103 km the user receiver positioning results, with various schemes, show an accuracy improvement of the proposed station-augmented PPP and ambiguity-fixed PPP solutions with respect to the standard float PPP solutions without station augmentation and ambiguity resolutions. Overall, the proposed reference station-based GNSS computing mode can support PPP and RTK positioning services as a simpler alternative to the existing network-based RTK or regionally augmented PPP systems.
Resumo:
This paper presents an approach to autonomously monitor the behavior of a robot endowed with several navigation and locomotion modes, adapted to the terrain to traverse. The mode selection process is done in two steps: the best suited mode is firstly selected on the basis of initial information or a qualitative map built on-line by the robot. Then, the motions of the robot are monitored by various processes that update mode transition probabilities in a Markov system. The paper focuses on this latter selection process: the overall approach is depicted, and preliminary experimental results are presented
Resumo:
We introduce the idea of geo-locking through a mobile phone based photo sharing application called Picalilly (figure 1). Using its geo-locking feature, Picalilly allows its users to manually define geographical boundaries for sharing photos -- limiting sharing within user-defined boundaries as well as facilitating open sharing between strangers within such boundaries. To explore the potential of geo-locking, we carried out a small scale field trial of Picalilly involving two groups of students, who were part of a two-week long introduction program at a university. Our preliminary results show that Picalilly facilitated 1) sharing of 'places' and 2) localized explorations.
Resumo:
In this study, experimental and numerical investigations have been conducted to explore the possibility of using A0 mode in Lamb waves to detect the position of delamination in carbon fiber reinforced plastic (CFRP) laminated beams. An experimental technique for exciting and sensing the pure A0 mode has been developed. By measuring the propagation speed of A0 mode and traveling time of a signal reflected from the delamination, its location can be identified experimentally and numerically. Moreover, the numerical analysis has been extended to gain a better understanding of the complex interaction between A0 mode and a long delamination case.
Resumo:
Working primarily within the natural landscape, this practice-led research project explored connections between the artist's visual and perceptual experience of a journey or place while simultaneously emphasizing the capacity for digital media to create a perceptual dissonance. By exploring concepts of time, viewpoint, duration of sequences and the manipulation of traditional constructs of stop-frame animation, the practical work created a cognitive awareness of the elements of the journey through optical sensations. The work allowed an opportunity to reflect on the nature of visual experience and its mediation through images. The project recontextualized the selected mediums of still photography, animation and projection within contemporary display modes of multiple screen installations by analysing relationships between the experienced and the perceived. The resulting works added to current discourse on the interstices between still and moving imagery in a digital world.
Resumo:
Emission spectroscopy was used to investigate ignition and combustion characteristics of supersonic combustion ramjet engines. Two-dimensional scramjet models with inlet injection, fuelled with hydrogen gas, were used in the study. The scramjet engines were configured to operate in radical farming mode, where combustion radicals are formed behind shock waves reflected at the walls. The chemiluminescence emission signals were recorded in a two-dimensional, time-integrated fashion to give information on the location and distribution of the radical farms in the combustors. High signal levels were detected in localised regions immediately downstream of shock reflections, an indication of localised hydroxyl formation supporting the concept of radical farming. Results are presented for a symmetric as well as an asymmetric scramjet geometry. These data represent the first successful visualisation of radical farms in the hot pockets of a supersonic combustor. Spectrally resolved measurements have been obtained in the ultraviolet wavelength range between 300 and 400 nm. This data shows that the OH! chemiluminescence signal around 306nm is not the most dominant source of radiation observed in the radical farms.
Resumo:
This study presents a general approach to identify dominant oscillation modes in bulk power system by using wide-area measurement system. To automatically identify the dominant modes without artificial participation, spectral characteristic of power system oscillation mode is applied to distinguish electromechanical oscillation modes which are calculated by stochastic subspace method, and a proposed mode matching pursuit is adopted to discriminate the dominant modes from the trivial modes, then stepwise-refinement scheme is developed to remove outliers of the dominant modes and the highly accurate dominant modes of identification are obtained. The method is implemented on the dominant modes of China Southern Power Grid which is one of the largest AC/DC paralleling grids in the world. Simulation data and field-measurement data are used to demonstrate high accuracy and better robustness of the dominant modes identification approach.
Resumo:
This paper demonstrates the use of a spreadsheet in exploring non-linear difference equations that describe digital control systems used in radio engineering, communication and computer architecture. These systems, being the focus of intensive studies of mathematicians and engineers over the last 40 years, may exhibit extremely complicated behaviour interpreted in contemporary terms as transition from global asymptotic stability to chaos through period-doubling bifurcations. The authors argue that embedding advanced mathematical ideas in the technological tool enables one to introduce fundamentals of discrete control systems in tertiary curricula without learners having to deal with complex machinery that rigorous mathematical methods of investigation require. In particular, in the appropriately designed spreadsheet environment, one can effectively visualize a qualitative difference in the behviour of systems with different types of non-linear characteristic.
Resumo:
The aim of this study was to evaluate the factor structure of the Baby Eating Behaviour Questionnaire (BEBQ) in an Australian community sample of mother-infant dyads. A secondary aim was to explore the relationship between the BEBQ subscales and infant gender, weight and current feeding mode. Confirmatory factor analysis (CFA) utilising structural equation modelling examined the hypothesised 4-factor model of the BEBQ. Only mothers (N=467) who completed all items on the BEBQ (infant age: M=17 weeks, SD=3 weeks) were included in the analysis. The original 4-factor model did not provide an acceptable fit to the data due to poor performance of the Satiety responsiveness factor. Removal of this factor (3 items) resulted in a well-fitting 3-factor model. Cronbach’s α was acceptable for the Enjoyment of food (α=0.73), Food responsiveness (α=0.78) and Slowness in eating (α=0.68) subscales but low for the Satiety responsiveness (α=0.56) subscale. Enjoyment of food was associated with higher infant weight whereas Slowness in eating and Satiety responsiveness were both associated with lower infant weight. Differences on all four subscales as a function of feeding mode were observed. This study is the first to use CFA to evaluate the hypothesised factor structure of the BEBQ. Findings support further development work on the Satiety responsiveness subscale in particular, but confirm the utility of the Enjoyment of food, Food responsiveness and Slowness in eating subscales.