882 resultados para mixed stock analysis
Resumo:
Sediments in the area of the Galapagos hydrothermal mounds are divided into two major categories. The first group, pelagic sediments, are nannofossil oozes with varying amounts of siliceous microfossils. The second group are hydrothermal sediments consisting of manganese-oxide crust fragments and green nontronitic clay granules. Hydrothermal sediments occur only in the upper half to two-thirds of the cores and are interbedded and mixed with pelagic sediments. Petrologic evidence indicates that hydrothermal nontronite forms as both a primary precipitate and as a replacement mineral of pre-existing pelagic sediment and hydrothermal manganese-oxide crust fragments. In addition, physical evidence supports chemical equations indicating that the pelagic sediments are being dissolved by hydrothermal solutions. The formation of hydrothermal nontronite is not merely confined to the surface of mounds, but also occurs at depth within their immediate area; hydrothermal nontronite is very likely forming today. Geologically speaking, the mounds and their hydrothermal sediments form almost instantaneously. The Galapagos mounds area is a unique one in the ocean basins, where pelagic sediments can be diagenetically transformed, dissolved, and replaced, possibly within a matter of years.
Resumo:
A high resolution mixed carbonate and siliciclastic sequence from DSDP Site 594 contains a detailed record of climate change in the late Pliocene. The sequence can be accurately dated by the LAD of Nitzschia weaveri, the LAD of Thalassiosira insigna, the LAD of T. vulnifica and the LAD of T. kolbei diatom datums. Carbonate content and delta18O signatures provide added resolution and place the sequence between isotope stage 100 and 92. The sequence contains well-preserved and diverse dinoflagellate cyst floras. Use of principal component (PCA) and canonical correspondence analyses (CCA) identifies changes in the assemblages that principally reflect warming and cooling trends. Species association with warmer climates included Impagidinium patulum, I. paradoxum and I. sp. cf. paradoxum while those from cooler climates include Invertecysta tabulata and I. velorum. CCA is shown to be a valuable method of determining the past environmental preferences of extinct species such as I. tabulata.
Resumo:
Three sediment cores from the Bragança Peninsula located in the coastal region in the north-eastern portion of Pará State have been studied by pollen analysis to reconstruct Holocene environmental changes and dynamics of the mangrove ecosystem. The cores were taken from an Avicennia forest (Bosque de Avicennia (BDA)), a salt marsh area (Campo Salgado (CS)) and a Rhizophora dominated area (Furo do Chato). Pollen traps were installed in five different areas of the peninsula to study modern pollen deposition. Nine accelerator mass spectrometry radiocarbon dates provide time control and show that sediment deposits accumulated relatively undisturbed. Mangrove vegetation started to develop at different times at the three sites: at 5120 14C yr BP at the CS site, at 2170 14C yr BP at the BDA site and at 1440 14C yr BP at the FDC site. Since mid Holocene times, the mangroves covered even the most elevated area on the peninsula, which is today a salt marsh, suggesting somewhat higher relative sea-levels. The pollen concentration in relatively undisturbed deposits seems to be an indicator for the frequency of inundation. The tidal inundation frequency decreased, probably related to lower sea-levels, during the late Holocene around 1770 14C yr BP at BDA, around 910 14C yr BP at FDC and around 750 14C yr BP at CS. The change from a mangrove ecosystem to a salt marsh on the higher elevation, around 420 14C yr BP is probably natural and not due to an anthropogenic impact. Modern pollen rain from different mangrove types show different ratios between Rhizophora and Avicennia pollen, which can be used to reconstruct past composition of the mangrove. In spite of bioturbation and especially tidal inundation, which change the local pollen deposition within the mangrove zone, past mangrove dynamics can be reconstructed. The pollen record for BDA indicates a mixed Rhizophora/Avicennia mangrove vegetation between 2170 and 1770 14C yr BP. Later Rhizophora trees became more frequent and since ca. 200 14C yr BP Avicennia dominated in the forest.
Resumo:
The present dataset includes results of analysis of 227 zooplankton samples taken in and off the Sevastopol Bay in the Black Sea in 1976, 1979-1980, 1989-1990, 1995-1996 and 2002-2003. Exact coordinates for stations 1, 4, 5 and 6 are unknown and were calculated using Google-earth program. Data on Ctenophora Mnemiopsis leidyi and Beroe ovata are not included. Juday net: Vertical tows of a Juday net, with mouth area 0.1 m**2, mesh size 150µm. Tows were performed at layers. Towing speed: about 0.5 m/s. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. The collected material was analysed using the method of portions (Yashnov, 1939). Samples were brought to volume of 50 - 100 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 1 ml of sample was taken by calibrated Stempel-pipette. This operation was produced twice. If divergence between two examined subsamples was more than 30% one more subsample was examined. Large (> 1 mm body length) and not abundant species were calculated in 1/2, 1/4, 1/8, 1/16 or 1/32 part of sample. Counting and measuring of organisms were made in the Bogorov chamber under the stereomicroscope to the lowest taxon possible. Number of organisms per sample was calculated as simple average of two subsamples meanings multiplied on subsample volume. Total abundance of mesozooplankton was calculated as sum of taxon-specific abundances and total abundance of Copepods was calculated as sum of copepods taxon-specific abundances.
Resumo:
The development of the ecosystem approach and models for the management of ocean marine resources requires easy access to standard validated datasets of historical catch data for the main exploited species. They are used to measure the impact of biomass removal by fisheries and to evaluate the models skills, while the use of standard dataset facilitates models inter-comparison. North Atlantic albacore tuna is exploited all year round by longline and in summer and autumn by surface fisheries and fishery statistics compiled by the International Commission for the Conservation of Atlantic Tunas (ICCAT). Catch and effort with geographical coordinates at monthly spatial resolution of 1° or 5° squares were extracted for this species with a careful definition of fisheries and data screening. In total, thirteen fisheries were defined for the period 1956-2010, with fishing gears longline, troll, mid-water trawl and bait fishing. However, the spatialized catch effort data available in ICCAT database represent a fraction of the entire total catch. Length frequencies of catch were also extracted according to the definition of fisheries above for the period 1956-2010 with a quarterly temporal resolution and spatial resolutions varying from 1°x 1° to 10°x 20°. The resolution used to measure the fish also varies with size-bins of 1, 2 or 5 cm (Fork Length). The screening of data allowed detecting inconsistencies with a relatively large number of samples larger than 150 cm while all studies on the growth of albacore suggest that fish rarely grow up over 130 cm. Therefore, a threshold value of 130 cm has been arbitrarily fixed and all length frequency data above this value removed from the original data set.
Resumo:
The development of the ecosystem approach and models for the management of ocean marine resources requires easy access to standard validated datasets of historical catch data for the main exploited species. They are used to measure the impact of biomass removal by fisheries and to evaluate the models skills, while the use of standard dataset facilitates models inter-comparison. North Atlantic albacore tuna is exploited all year round by longline and in summer and autumn by surface fisheries and fishery statistics compiled by the International Commission for the Conservation of Atlantic Tunas (ICCAT). Catch and effort with geographical coordinates at monthly spatial resolution of 1° or 5° squares were extracted for this species with a careful definition of fisheries and data screening. In total, thirteen fisheries were defined for the period 1956-2010, with fishing gears longline, troll, mid-water trawl and bait fishing. However, the spatialized catch effort data available in ICCAT database represent a fraction of the entire total catch. Length frequencies of catch were also extracted according to the definition of fisheries above for the period 1956-2010 with a quarterly temporal resolution and spatial resolutions varying from 1°x 1° to 10°x 20°. The resolution used to measure the fish also varies with size-bins of 1, 2 or 5 cm (Fork Length). The screening of data allowed detecting inconsistencies with a relatively large number of samples larger than 150 cm while all studies on the growth of albacore suggest that fish rarely grow up over 130 cm. Therefore, a threshold value of 130 cm has been arbitrarily fixed and all length frequency data above this value removed from the original data set.
Resumo:
The development of the ecosystem approach and models for the management of ocean marine resources requires easy access to standard validated datasets of historical catch data for the main exploited species. They are used to measure the impact of biomass removal by fisheries and to evaluate the models skills, while the use of standard dataset facilitates models inter-comparison. North Atlantic albacore tuna is exploited all year round by longline and in summer and autumn by surface fisheries and fishery statistics compiled by the International Commission for the Conservation of Atlantic Tunas (ICCAT). Catch and effort with geographical coordinates at monthly spatial resolution of 1° or 5° squares were extracted for this species with a careful definition of fisheries and data screening. In total, thirteen fisheries were defined for the period 1956-2010, with fishing gears longline, troll, mid-water trawl and bait fishing. However, the spatialized catch effort data available in ICCAT database represent a fraction of the entire total catch. Length frequencies of catch were also extracted according to the definition of fisheries above for the period 1956-2010 with a quarterly temporal resolution and spatial resolutions varying from 1°x 1° to 10°x 20°. The resolution used to measure the fish also varies with size-bins of 1, 2 or 5 cm (Fork Length). The screening of data allowed detecting inconsistencies with a relatively large number of samples larger than 150 cm while all studies on the growth of albacore suggest that fish rarely grow up over 130 cm. Therefore, a threshold value of 130 cm has been arbitrarily fixed and all length frequency data above this value removed from the original data set.
Resumo:
The development of the ecosystem approach and models for the management of ocean marine resources requires easy access to standard validated datasets of historical catch data for the main exploited species. They are used to measure the impact of biomass removal by fisheries and to evaluate the models skills, while the use of standard dataset facilitates models inter-comparison. North Atlantic albacore tuna is exploited all year round by longline and in summer and autumn by surface fisheries and fishery statistics compiled by the International Commission for the Conservation of Atlantic Tunas (ICCAT). Catch and effort with geographical coordinates at monthly spatial resolution of 1° or 5° squares were extracted for this species with a careful definition of fisheries and data screening. In total, thirteen fisheries were defined for the period 1956-2010, with fishing gears longline, troll, mid-water trawl and bait fishing. However, the spatialized catch effort data available in ICCAT database represent a fraction of the entire total catch. Length frequencies of catch were also extracted according to the definition of fisheries above for the period 1956-2010 with a quarterly temporal resolution and spatial resolutions varying from 1°x 1° to 10°x 20°. The resolution used to measure the fish also varies with size-bins of 1, 2 or 5 cm (Fork Length). The screening of data allowed detecting inconsistencies with a relatively large number of samples larger than 150 cm while all studies on the growth of albacore suggest that fish rarely grow up over 130 cm. Therefore, a threshold value of 130 cm has been arbitrarily fixed and all length frequency data above this value removed from the original data set.
Resumo:
Oxygen isotope measurements have been made in foraminifera from over 60 deep-sea sediment cores. Taken together with the oxygen isotope measurements published by Emiliani from Caribbean and Equatorial Atlantic cores, this comprises a unique body of stratigraphic data covering most of the important areas of calcareous sediment over the whole world ocean. The oxygen isotopic composition of foraminifera from cores of Late Pleistocene sediment varies in a similar manner in nearly all areas; the variations reflect changes in the oxygen isotopic composition of the ocean. The oceans are mixed in about 1 ka so that ocean isotopic changes, resulting from fluctuations in the quantity of ice stored on the continents, must have occurred almost synchronously in all regions. Thus the oxygen isotope record provides an excellent means of stratigraphic correlation. Cores accumulated at rates of over about 5 cm/ka provide records of oxygen isotopic composition change that are almost unaffected by post-depositional mixing of the sediment. Thus they preserve a detailed record of the advance and retreat of the ice masses in the northern hemisphere, and provide a unique source of information for the study of ice-sheet dynamics.
Resumo:
The development of the ecosystem approach and models for the management of ocean marine resources requires easy access to standard validated datasets of historical catch data for the main exploited species. They are used to measure the impact of biomass removal by fisheries and to evaluate the models skills, while the use of standard dataset facilitates models inter-comparison. North Atlantic albacore tuna is exploited all year round by longline and in summer and autumn by surface fisheries and fishery statistics compiled by the International Commission for the Conservation of Atlantic Tunas (ICCAT). Catch and effort with geographical coordinates at monthly spatial resolution of 1° or 5° squares were extracted for this species with a careful definition of fisheries and data screening. In total, thirteen fisheries were defined for the period 1956-2010, with fishing gears longline, troll, mid-water trawl and bait fishing. However, the spatialized catch effort data available in ICCAT database represent a fraction of the entire total catch. Length frequencies of catch were also extracted according to the definition of fisheries above for the period 1956-2010 with a quarterly temporal resolution and spatial resolutions varying from 1°x 1° to 10°x 20°. The resolution used to measure the fish also varies with size-bins of 1, 2 or 5 cm (Fork Length). The screening of data allowed detecting inconsistencies with a relatively large number of samples larger than 150 cm while all studies on the growth of albacore suggest that fish rarely grow up over 130 cm. Therefore, a threshold value of 130 cm has been arbitrarily fixed and all length frequency data above this value removed from the original data set.