986 resultados para mix design
Resumo:
Privacy is an important component of freedom and plays a key role in protecting fundamental human rights. It is becoming increasingly difficult to ignore the fact that without appropriate levels of privacy, a person’s rights are diminished. Users want to protect their privacy - particularly in “privacy invasive” areas such as social networks. However, Social Network users seldom know how to protect their own privacy through online mechanisms. What is required is an emerging concept that provides users legitimate control over their own personal information, whilst preserving and maintaining the advantages of engaging with online services such as Social Networks. This paper reviews “Privacy by Design (PbD)” and shows how it applies to diverse privacy areas. Such an approach will move towards mitigating many of the privacy issues in online information systems and can be a potential pathway for protecting users’ personal information. The research has also posed many questions in need of further investigation for different open source distributed Social Networks. Findings from this research will lead to a novel distributed architecture that provides more transparent and accountable privacy for the users of online information systems.
Plasmin substrate binding site cooperativity guides the design of potent peptide aldehyde inhibitors
Resumo:
Design Science Research (DSR) has emerged as an important approach in Information Systems (IS) research. However, DSR is still in its genesis and has yet to achieve consensus on even the fundamentals, such as what methodology / approach to use for DSR. While there has been much effort to establish DSR methodologies, a complete, holistic and validated approach for the conduct of DSR to guide IS researcher (especially novice researchers) is yet to be established. Alturki et al. (2011) present a DSR ‘Roadmap’, making the claim that it is a complete and comprehensive guide for conducting DSR. This paper aims to further assess this Roadmap, by positioning it against the ‘Idealized Model for Theory Development’ (IM4TD) (Fischer & Gregor 2011). The IM4TD highlights the role of discovery and justification and forms of reasoning to progress in theory development. Fischer and Gregor (2011) have applied IM4TD’s hypothetico-deductive method to analyze DSR methodologies, which is adopted in this study to deductively validate the Alturki et al. (2011) Roadmap. The results suggest that the Roadmap adheres to the IM4TD, is reasonably complete, overcomes most shortcomings identified in other DSR methodologies and also highlights valuable refinements that should be considered within the IM4TD.
Resumo:
The importance of design to the UK economy is widely recognised. It is one of the key pillars of the knowledge economy, it plays an important role in the innovation process, and it is one of a number of specialisms that help to set the UK apart from global competition. But despite this importance, the nature of design-intensive industries – the businesses that practice and sell design – is remarkably hard to pin down. This uncertainty renders it hard to analyse, and makes it difficult to develop clear, consistent policies to support the designers. The Hargreaves Review recommended that more research was needed to develop a clear evidence base for improving the intellectual property system for design. This report forms part of that evidence base. It examines how UK design figures in the global economy, and considers how the intellectual property system can best support its growth.
Resumo:
This is an independent report comissioned by the Intellectual Property Office (IPO) and supported by the Design Council.
Resumo:
Enabling web-based service networks and ecosystems requires a way of describing services by a "commercial envelope" as discussed in Chapter 1. A uniform conception of services across all walks of life (including technical services) is required capturing business, operational and technical aspects. Therefore, our proposed Unified Service Description Language (USDL) particularly draws from and generalizes the best-of-breed approaches presented in Part I. The following chapter presents the design rationale of USDL where the different aspects are put in a framework of descriptions requirements. This is followed by the subsequent chapters of this part that provide details on specific aspects such as pricing or legal issues.
Resumo:
Vertical vegetation is vegetation growing on, or adjacent to, the unused sunlit exterior surfaces of buildings in cities. Vertical vegetation can improve the energy efficiency of the building on which it is installed mainly by insulating, shading and transpiring moisture from foliage and substrate. Several design parameters may affect the extent of the vertical vegetation's improvement of energy performance. Examples are choice of vegetation, growing medium geometry, north/south aspect and others. The purpose of this study is to quantitatively map out the contribution of several parameters to energy savings in a subtropical setting. The method is thermal simulation based on EnergyPlus configured to reflect the special characteristics of vertical vegetation. Thermal simulation results show that yearly cooling energy savings can reach 25% with realistic design choices in subtropical environments. Heating energy savings are negligible. The most important parameter is the aspect of walls covered by vegetation. Vertical vegetation covering walls facing north (south for the northern hemisphere) will result in the highest energy savings. In making plant selections, the most significant parameter is Leaf Area Index (LAI). Plants with larger LAI, preferably LAI>4, contribute to greater savings whereas vertical vegetation with LAI<2 can actually consume energy. The choice of growing media and its thickness influence both heating and cooling energy consumption. Change of growing medium thickness from 6cm to 8cm causes dramatic increase in energy savings from 2% to 18%. For cooling, it is best to use a growing material with high water retention, due to the importance of evapotranspiration for cooling. Similarly, for increased savings in cooling energy, sufficient irrigation is required. Insufficient irrigation results in the vertical vegetation requiring more energy to cool the building. To conclude, the choice of design parameters for vertical vegetation is crucial in making sure that it contributes to energy savings rather than energy consumption. Optimal design decisions can create a dramatic sustainability enhancement for the built environment in subtropical climates.
Resumo:
Ecological sustainability has been proposed to address the problem of human impacts increasingly degrading planetary resources and ecosystems, threatening biodiversity, eco-services and human survival. Ecological sustainability is an imperative, with Australia having one of the highest eco-footprints per person worldwide. While significant progress has been made via implementation of ecologically sustainable design in urban communities, relatively little has been undertaken in small, disparate regional communities in Australia. Regional communities are disadvantaged by rural economic decline associated with structural change and inequities of resource transfer. The ecologically sustainable solution is holistic, so all settlements need to be globally wise, richly biodiverse yet locally specific. As a regional solution to this global problem, this research offers the practical means by which a small regional community can contribute. It focuses on the design and implementation of a community centre and the fostering of transformative community learning through an integrated ‘learning community’ awareness of ecologically sustainable best practice. Lessons learned are documented by the participant researcher who as a designer, facilitator, local resident and social narrator has been deeply connected with the Tweed-Caldera region over a period since 1980. The collective action of the local community of Chillingham has been diligently recorded over a decade of design and development. Over this period, several positive elements emerged in terms of improvements to the natural and built environment, greater social cohesion and co-operative learning along with a shift towards a greener local economy. Behavioural changes in the community were noted as residents strived to embrace ecological ideals and reduce fossil fuel dependency. They found attractive local solutions to sourcing of food and using local employment opportunities to up skill their residents via transformative learning as a community in transition. Finally, the catalytic impact of external partnering has also been documented. How well the region as a whole has achieved its ecologically sustainable objectives is measured in terms of the delivered success of private and public partnering with the community, the creation of a community centre cum environment education centre, the restoration of local heritage buildings, the repair of riparian forests and improved water conditions in local river systems, better roads and road safety, local skills and knowledge transfer, support of local food and local/regional growers markets to attract tourists via the integrated trails network. In aggregate, each and every element contributes to a measure of eco-positive development for the built environment, its social organisation and its economy that has guided the local community to find its own pathway to sustainability. Within the Tweed-Caldera bioregion in northern New South Wales, there has been a lack of strategic planning, ecologically sustainable knowledge and facilities in isolated communities that could support the development of a local sustained green economy, provide a hub for socio-cultural activities and ecology based education. The first challenge in this research was to model a whole systems approach to eco-positive development in Chillingham, NSW, a small community where Nature and humanity know no specific boundary. The net result was the creation of a community environment education centre featuring best-affordable ecological practice and regionally distinctive, educational building form from a disused heritage building (cow bale). This development, implemented over a decade, resonated with the later regional wide programs that were linked in the Caldera region by the common purpose of extending the reach of local and state government assistance to regional NSW in economic transition coupled with sustainability. The lessons learned from these linked projects reveal that subsequent programs have been significantly easier to initiate, manage, develop and deliver results. In particular, pursuing collaborative networks with all levels of government and external private partners has been economically effective. Each community’s uniqueness has been celebrated and through drawing out these distinctions, has highlighted local vision, strategic planning, sense of belonging and connection of people with place. This step has significantly reduced the level of friction between communities that comes from natural competition for the finite pool of funds. Following the pilot Tweed-Caldera study, several other NSW regional communities are now undertaking a Community Economic Transition Program based on the processes, trials and positive experiences witnessed in the Tweed-Caldera region where it has been demonstrated that regional community transition programs can provide an opportunity to plan and implement effective long term strategies for sustainability, empowering communities to participate in eco-governance. This thesis includes the design and development of a framework for community created environment education centres to provide an equal access place for community to participate to meet their essential needs locally. An environment centre that facilitates community transition based on easily accessible environmental education, skills and infrastructure is necessary to develop local cultures of sustainability. This research draws upon the literatures of ecologically sustainable development, environmental education and community development in the context of regional community transition towards ‘strong sustainability’. The research approach adapted is best described as a four stage collaborative action research cycle where the participant researcher (me) has a significant involvement in the process to foster local cultures of sustainability by empowering its citizens to act locally and in doing so, become more self reliant and socially resilient. This research also draws upon the many fine working exemplars, such as the resilience of the Cuban people, the transition town initiative in Totnes, U.K. and the models of Australian Community Gardens, such as CERES (Melbourne) and Northey Street (Brisbane). The objectives of this study are to research and evaluate exemplars of ecologically sustainable environment education centres, to facilitate the design and development of an environment education centre created by a small regional community as an ecologically sustainable learning environment; to facilitate a framework for community transition based on environmental education, skills and infrastructure necessary to develop local cultures of sustainability. The research was undertaken as action research in the Tweed Caldera in Northern NSW. This involved the author as participant researcher, designer and volunteer in two interconnected initiatives: the Chillingham Community Centre development and the Caldera Economic Transition Program (CETP). Both initiatives involved a series of design-led participatory community workshops that were externally facilitated with the support of government agency partnerships, steering committees and local volunteers. Together the Caldera research programs involved communities participating in developing their own strategic planning process and outcomes. The Chillingham Community Centre was developed as a sustainable community centre/hub using a participatory design process. The Caldera Economic Transition Program (CETP) prioritised Caldera region projects: the Caldera farmer’s market; community gardens and community kitchens; community renewable energy systems and an integrated trails network. The significant findings were: the CETP projects were capable of moving towards an eco-positive design benchmark through transformative learning. Community transition to sustainability programs need to be underpinned by sustainability and environmental education based frameworks and practical on ground experience in local needs based projects through transformative learning. The actioned projects were successfully undertaken through community participation and teamwork. Ecological footprint surveys were undertaken to guide and assess the ongoing community transition process, however the paucity of responses needs to be revisited. The concept of ecologically sustainable development has been adopted internationally, however existing design and planning strategies do not assure future generations continued access to healthy natural life support systems. Sustainable design research has usually been urban focussed, with little attention paid to regional communities. This study seeks to redress this paucity through the design of ecologically sustainable (deep green) learning environments for small regional communities. Through a design-led process of environmental education, this study investigates how regional communities can be facilitated to model the principles of eco-positive development to support transition to local cultures of sustainability. This research shows how community transition processes and projects can incorporate sustainable community development as transformative learning through design. Regional community transition programs can provide an opportunity to plan long term strategies for sustainability, empowering people to participate in eco-governance. A framework is developed for a community created environment education centre to provide an equal access place for the local community to participate in implementing ways to meet their essential needs locally. A community environment education centre that facilitates community transition based on holistic environmental education, skills and infrastructure is necessary to develop local cultures of sustainability.
Resumo:
Firms face the challenge of remaining competitive through both entrepreneurial activities and the strategic management of resources. Strategic entrepreneurship around notions of acquiring, bundling and leveraging resources to create value for customers and firm competitive advantage has been studied in relation to large established firms (Hitt et al 2010) but largely overlooked in studies of small and medium enterprises. Recent theorizing regarding the processes by which firms orchestrate resources to create new economic activity (Sirmon et al, 2011) has focused on the managerial capabilities of structuring, bundling and leveraging resources across the firms breadth, depth and lifecycle. This approach offers a potential framework for investigating processes of economic activity and strategic renewal (Agarwal & Helfat, 2009).
Resumo:
Flexible tubular structures fabricated from solution electrospun fibers are finding increasing use in tissue engineering applications. However it is difficult to control the deposition of fibers due to the chaotic nature of the solution electrospinning jet. By using non-conductive polymer melts instead of polymer solutions the path and collection of the fiber becomes predictable. In this work we demonstrate the melt electrospinning of polycaprolactone in a direct writing mode onto a rotating cylinder. This allows the design and fabrication of tubes using 20 μm diameter fibers with controllable micropatterns and mechanical properties. A key design parameter is the fiber winding angle, where it allows control over scaffold pore morphology (e.g. size, shape, number and porosity). Furthermore, the establishment of a finite element model as a predictive design tool is validated against mechanical testing results of melt electrospun tubes to show that a lesser winding angle provides improved mechanical response to uniaxial tension and compression. In addition, we show that melt electrospun tubes support the growth of three different cell types in vitro and are therefore promising scaffolds for tissue engineering applications.
Resumo:
The Italian Colonial Experience in the design of the built environment is analysed as a case study of State image promotion.