985 resultados para mesothelioma, lysine acetyltransferase, epigenetics, MG 149, inflammation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introdução; As minibibliotecas no contexto da leitura e do aprendizado; Metodologia; Análise e discussão dos dados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Um dos pré-requisitos para o sucesso na seleção e implantação de áreas de pesquisa é o conhecimento preciso da distribuição dos solos e de seus atributos na paisagem. Isso pode ser obtido com o levantamento e mapeamento pedológico convencional e/ou através de técnicas de mapeamento digital de solos (MDS). Este trabalho apresenta os solos identificados no Parque Estadual da Mata Seca (PEMS), localizado no município de Manga, região norte do Estado de Minas Gerais. É parte integrante de um projeto maior, cujo objetivo é explorar novas técnicas de MDS em pequenas extensões territoriais, avaliar e validar seus produtos e estabelecer um protocolo de procedimentos para tal. Abrangendo a extensão de 10.281,44 ha, o PEMS tem sua geologia associada a coberturas cenozóicas derivadas de: (a) rochas pelíticocarbonáticas que compõem o Grupo Bambuí, de idade proterozóica, (b) arenitos cretáceos do Grupo Urucuia e, (c) depósitos quarternários resultantes do retrabalhamento do rio São Francisco. Os tipos e diversidade de material de origem foram os fatores preponderantes na formação e distribuição dos solos e na sua relação com os demais elementos formadores da paisagem local. Em termos gerais, a seguinte relação solo-paisagem pode ser observada na área: Latossolos Amarelos e Vermelho-Amarelos distróficos e de textura média ocupam os platôs (chapada) de relevo predominantemente plano, situados nas cotas mais elevadas do PEMS e sob domínio das coberturas relacionadas aos arenitos do Grupo Urucuia. A vegetação de Carrasco é exclusiva e marcante dessa paisagem, seja observando-a in loco, seja por meio de imagens de sensores remotos. Há uma faixa transicional entre esses domínios e aqueles situados em cotas ligeiramente inferiores, que são influenciados exclusivamente pelas rochas calcárias. A existência de eutrofismo associado à textura média em Latossolos Vermelho-Amarelos, Vermelhos, Chernossolos e Cambissolos (latossólicos), bem como a vegetação de Caatinga Arbórea Densa (de médio porte) são evidências do caráter transicional. As paisagens sob domínio das rochas pelítico-carbonáticas em que se desenvolve a Floresta Estacional Decidual Densa de alto porte (Mata Seca) são de maior extensão e complexidade na área. Nelas, o relevo e a proximidade do material de origem exercem ação modificadora na formação dos solos. As seguintes subordens taxonômicas foram observadas nesse domínio fisiográfico:Cambissolos Háplicos, Latossolos Vermelhos e Vermelhos-Amarelos, Chernossolos Háplicos e Argilúvicos, Vertissolos Háplicos, Plintossolos Pétricos, Gleissolos Háplicos e Melânicos. Dentre estas, os Latossolos Vermelho- Amarelos e Vermelhos juntamente aos Cambissolos Háplicos dominam em extensão, distribuindo-se em aproximadamente 87,0% das áreas sob influência calcária. Finalmente, nos depósitos quaternários do rio São Francisco, em relevo plano e sob Floresta Tropical Pluvial Perenifólia, foram mapeados Cambissolos Flúvicos e Neossolos Flúvicos em condições de boa drenagem, enquanto os Gleissolos Háplicos ocorrem nas áreas deprimidas, permanente ou temporariamente inundadas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os zoneamentos agroecológicos são modelos de pacotes tecnológicos que contêm recomendações para o uso sustentável dos recursos naturais e têm sua aplicação mais oportuna na agricultura irrigada, onde é maior a intensidade de uso destes recursos, principalmente o solo. A metodologia do Sistema Brasileiro de Classificação de Terras para Irrigação (SiBCTI) teve por finalidade o desenvolvimento de uma sistemática adaptada à realidade brasileira, constituindo um sistema de suporte à decisão para subsidiar zoneamentos agroecológicos voltados a esta temática. O objetivo deste estudo foi avaliar o potencial de terras para irrigação na área do Projeto Jequitaí (MG) por meio do SiBCTI. A utilização do SiBCTI na área deste projeto indicou, no sistema de irrigação localizado, um total de 8.584 ha de terras classificadas na classe a1. No sistema de irrigação por aspersão, as terras enquadradas na classe a1 alcançaram apenas 2.635 ha; e para o sistema de irrigação superfície não houve indicação de terras enquadradas nesta classe. O resultado geral da utilização do SiBCTI para o Projeto Jequitaí mostrou haver, tanto para o sistema por aspersão quanto para localizada, um total de 39.839 ha de terras consideradas irrigáveis. Os principais fatores limitantes para os sistemas localizado e aspersão foram o pH em água e a capacidade de água disponível. Considerando o sistema por superfície, os principais fatores limitantes foram a capacidade de água disponível e a velocidade de infiltração.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objetivou-se com esse trabalho identificar as espécies de plantas daninhas presentes em 69 áreas de produção de tomate rasteiro em 24 municípios, dos estados de Goiás, Minas Gerais e São Paulo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethnopharmacological relevance: A common plant used to treat several gastric disorders is Buddleja scordioides Kunth,commonly known as salvilla. Aim of thes tudy: To detect inflammatory markers,in order to evaluate the gastroprotective potential of salvilla infusions,as this could have beneficial impact on the population exposed to gastric ulcers and colitis. Materials and methods: The present work attempted infusions were prepared with B. scordioides (1% w/w) lyophilized and stored.Total phenolic content and GC–MS analysis were performed. Wistar rats were divided into five groups a negative vehicle control,an indomethacin group,and three experimental groups,named preventive,curative,and suppressive. All rats were sacrificed under deep ether anesthesia(6h)after the last oral administration of indomethacin/infusion.The rat stomachs were promptly excised,weighed,and chilled in ice-cold and 0.9%NaCl.Histological analysis,nitrites quantification and immunodetection assays were done. Results: B.scordioides infusions markedly reduced the visible hemorrhagic lesions induced byindomethacin in rat stomachs,also showed down-regulation of COX2, IL-8 and TNFα and up-regulation of COX-1with a moderate down-regulation of NFkB and lower amount of nitrites.However,this behavior was dependent on the treatment,showing most down-regulation of COX-2,TNFα and IL-8 in the curative treatment;more down-regulation of NF-kB in the preventive treatment;and more up-regulation of COX-1 for the suppressor and preventive treatments. Conclusion: The anti-inflammatory potential of B. scordioides infusions could be related with the presence of polyphenols as quercetin in the infusion and how this one is consumed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article is a continuation of a four-piece work describing the condition of soil in what has been broadly defined as central Poznań. This article presents the content of active forms of six chemical elements which tend to be absorbed by plants in biggest quantities. Relations between these chemical elements are discussed and indications are made of how to counteract the negative effects of deficits as well as overdoses of specific chemical elements in the substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammation is a complex and highly organised immune response to microbes and tissue injury. Recognition of noxious stimuli by pathogen recognition receptor families including Toll-like receptors results in the expression of hundreds of genes that encode cytokines, chemokines, antimicrobials and regulators of inflammation. Regulation of TLR activation responses is controlled by TLR tolerance which induces a global change in the cellular transcriptional expression profile resulting in gene specific suppression and induction of transcription. In this thesis the plasticity of TLR receptor tolerance is investigated using an in vivo, transcriptomics and functional approach to determine the plasticity of TLR tolerance in the regulation of inflammation. Firstly, using mice deficient in the negative regulator of TLR gene transcription, Bcl-3 (Bcl-3-/-) in a model of intestinal inflammation, we investigated the role of Bcl-3 in the regulation of intestinal inflammatory responses. Our data revealed a novel role for Bcl-3 in the regulation of epithelial cell proliferation and regeneration during intestinal inflammation. Furthermore this data revealed that increased Bcl-3 expression contributes to the development of inflammatory bowel disease (IBD). Secondly, we demonstrate that lipopolysaccharide tolerance is transient and recovery from LPS tolerance results in polarisation of macrophages to a previously un-described hybrid state (RM). In addition, we identified that RM cells have a unique transcriptional profile with suppression and induction of genes specific to this polarisation state. Furthermore, using a functional approach to characterise the outcomes of TLR tolerance plasticity, we demonstrate that cytokine transcription is uncoupled from cytokine secretion in macrophages following recovery from LPS tolerance. Here we demonstrate a novel mechanism of regulation of TLR tolerance through suppression of cytokine secretion in macrophages. We show that TNF-α is alternatively trafficked towards a degradative intracellular compartment. These studies demonstrate that TLR tolerance is a complex immunological response with the plasticity of this state playing an important role in the regulation of inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gastro-Intestinal (GI) tract is a unique region in the body. Our innate immune system retains a fine homeostatic balance between avoiding inappropriate inflammatory responses against the myriad commensal microbes residing in the gut while also remaining active enough to prevent invasive pathogenic attack. The intestinal epithelium represents the frontline of this interface. It has long been known to act as a physical barrier preventing the lumenal bacteria of the gastro-intestinal tract from activating an inflammatory immune response in the immune cells of the underlying mucosa. However, in recent years, an appreciation has grown surrounding the role played by the intestinal epithelium in regulating innate immune responses, both in the prevention of infection and in maintaining a homeostatic environment through modulation of innate immune signalling systems. The aim of this thesis was to identify novel innate immune mechanisms regulating inflammation in the GI tract. To achieve this aim, we chose several aspects of regulatory mechanisms utilised in this region by the innate immune system. We identified several commensal strains of bacteria expressing proteins containing signalling domains used by Pattern Recognition Receptors (PRRs) of the innate immune system. Three such bacterial proteins were studied for their potentially subversive roles in host innate immune signalling as a means of regulating homeostasis in the GI tract. We also examined differential responses to PRR activation depending on their sub-cellular localisation. This was investigated based on reports that apical Toll-Like Receptor (TLR) 9 activation resulted in abrogation of inflammatory responses mediated by other TLRs in Intestinal Epithelial Cells (IECs) such as basolateral TLR4 activation. Using the well-studied invasive intra-cellular pathogen Listeria monocytogenes as a model for infection, we also used a PRR siRNA library screening technique to identify novel PRRs used by IECs in both inhibition and activation of inflammatory responses. Many of the PRRs identified in this screen were previously believed not to be expressed in IECs. Furthermore, the same study has led to the identification of the previously uncharacterised TLR10 as a functional inflammatory receptor of IECs. Further analysis revealed a similar role in macrophages where it was shown to respond to intracellular and motile pathogens such as Gram-positive L.monocytogenes and Gram negative Salmonella typhimurium. TLR10 expression in IECs was predominantly intracellular. This is likely in order to avoid inappropriate inflammatory activation through the recognition of commensal microbial antigens on the apical cell surface of IECs. Moreover, these results have revealed a more complex network of innate immune signalling mechanisms involved in both activating and inhibiting inflammatory responses in IECs than was previously believed. This contribution to our understanding of innate immune regulation in this region has several direct and indirect benefits. The identification of several novel PRRs involved in activating and inhibiting inflammation in the GI tract may be used as novel therapeutic targets in the treatment of disease; both for inducing tolerance and reducing inflammation, or indeed, as targets for adjuvant activation in the development of oral vaccines against pathogenic attack.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has become clear that inflammation is beneficial to man, there are situations though that the inflammatory response causes damage to the host that is harmful to health. When the inflammatory response fails or is too strong, the health of the host is damaged and disease can occur. The implication of intestinal disease caused by an ineffective immune response is of great social and economic burden to society. The overarching purpose of this thesis is to assess inflammatory signalling targets associated with immune mediated disorders such as IBD, IBS and inflammatory liver disease. By assessing these targets and modifying their function I hope to contribute and expand further the pre-existing information on these disorders and improve the therapeutic interventions available in these debilitating conditions. I will assess the role of inflammation in disorders of the GI tract and liver IBD, IBS, hepatic inflammatory injury and furthermore, I will use pharmaceutical agents to activate and suppress components of the immune system. I will examine the inflammatory response in experimental models of disease for IBD and liver injury, I will attempt to alter these pathways using pharmaceutical intervention to delineate the disease causing mechanism that may lead to clinically relevant therapeutic interventions. In regards to IBS, I will attempt to improve the existing knowledge that exists in relation to the pathogenesis of this functional bowel disorder. I will attempt to define a mechanism by which the low grade mucosal inflammation that has been demonstrated by others arises and what this inflammation is induced by. The overall aim of this thesis is to attempt to further understand the mechanisms behind GI and liver disease. Looking at the inflammatory response in these specific conditions and how they can be altered may lead to exciting new therapies for inflammatory conditions in the gastrointestinal tract.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The p75 neurotrophin receptor (p75NTR) is a member of the tumour necrosis factor superfamily, which relies on the recruitment of cytosolic protein partners - including the TNF receptor associated factor 6 (TRAF6) E3 ubiquitin ligase - to produce cellular responses such as apoptosis, survival, and inhibition of neurite outgrowth. Recently,p75NTR was also shown to undergo γ-secretase-mediated regulated intramembrane proteolysis, and the receptor ICD was found to migrate to the nucleus where it regulates gene transcription. Moreover, γ-secretase-mediated proteolysis was shown to be involved in glioblastoma cell migration and invasion. In this study we report that TRAF6-mediated K63-linked polyubiquitination at multiple or alternative lysine residues influences p75NTR-ICD stability in vitro. In addition, we found that TRAF6-mediated ubiquitination of p75NTR is not influenced by inhibition of dynamin. Moreover, we report beta-transducin repeats-containing protein (β-TrCP) as a novel E3- ligase that ubiquitinates p75NTR, which is independent of serine phosphorylation of the p75NTR destruction motif. In contrast to its influence on other substrates, co-expression of β-TrCP did not reduce p75NTR stability. We created U87-MG glioblastoma cell lines stably expressing wild type, γ-secretaseresistant and constitutively cleaved receptor, as well as the ICD-stabilized mutant K301R. Interestingly, only wild-type p75NTR induces increased glioblastoma cell migration, which could be reversed by application of γ-secretase inhibitor. Microarray and qRT-PCR analysis of mRNA transcripts in these cell lines yielded several promising genes that might be involved in glioblastoma cell migration and invasion, such as cadherin 11 and matrix metalloproteinase 12. Analysis of potential transcription factor binding sites revealed that transcription of these genes might be regulated by well known p75NTR signalling cascades such as NF-κB or JNK signalling, which are independent of γ-secretase-mediated cleavage of the receptor. In contrast, while p75NTR overexpression was confirmed in melanoma cell lines and a patient sample of melanoma metastasis to the brain, inhibition of γ-secretase did not influence melanoma cell migration. Collectively, this study provides several avenues to better understand the physiological importance of posttranslational modifications of p75NTR and the significance of the receptor in glioblastoma cell migration and invasion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytokine-driven signalling shapes immune homeostasis and guides inflammatory responses mainly through induction of specific gene expression programmes both within and outside the immune cell compartment. These transcriptional outputs are often amplified via cytokine synergy, which sets a stimulatory threshold that safeguards from exacerbated inflammation and immunopathology. In this study, we investigated the molecular mechanisms underpinning synergy between two pivotal Th1 cytokines, IFN-γ and TNF-α, in human intestinal epithelial cells. These two proinflammatory mediators induce a unique state of signalling and transcriptional synergy implicated in processes such as antiviral and antitumour immunity, intestinal barrier and pancreatic β-cell dysfunction. Since its discovery more than 30 years ago, this biological phenomenon remains, however, only partially defined. Here, using a functional genomics approach including RNAi perturbation screens and small-molecule inhibitors, we identified two new regulators of IFN-γ/TNF-α-induced chemokine and antiviral gene and protein expression, a Bcl-2 protein BCL-G and a histone demethylase UTX. We also discovered that IFN-γ/TNF-α synergise to trigger a coordinated shutdown of major receptor tyrosine kinases expression in colon cancer cells. Together, these findings extend our current understanding of how IFN-γ/TNF-α synergy elicits qualitatively and quantitatively distinct outputs in the intestinal epithelium. Given the well-documented role of this synergistic state in immunopathology of various disorders, our results may help to inform the identification of high quality and biologically relevant druggable targets for diseases characterised by an IFN-γ/TNF-α high immune signature

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The role of Fas (CD95) and its ligand, Fas ligand (FasL/CD95L), is poorly understood in the intestine. Whilst Fas is best studies in terms of its function in apoptosis, recent studies suggest that Fas ligation may mediate additional, non-apoptotic functions such as inflammation. Toll like Receptors (TLRs) play an important role in mediating inflammation and homeostasis in the intestine. Recent studies have shown that a level of crosstalk exists between the Fas and TLR signalling pathways but this has not yet been investigated in the intestine. Aim: The aim of this study was to evaluate potential cross-talk between TLRs and Fas/FasL system in intestinal cancer cells. Results: Treatment with TLR4 and TLR5 ligands, but not ligands for TLR2 and TLR9 increased the expression of Fas and FasL in intestinal cancer cells in vitro. Consistent with this, expression of Fas and FasL was reduced in the distal colon tissue from germ-free (GF), TLR4 and TLR5 knock-out (KO) mice but was unchanged in TLR2KO tissue, suggesting that intestinal cancer cells display a degree of specificity in their ability to upregulate Fas and FasL expression in response to TLR ligation. Expression of both Fas and FasL was significantly reduced in TRIF KO tissue, indicating that signalling via TRIF by TLR4 and TLR5 agonists may be responsible for the induction of Fas and FasL expression in intestinal cancer cells. In addition, modulating Fas signalling using agonistic anti-Fas augmented TLR4 and TLR5-mediated tumour necrosis factor alpha (TNFα) and interleukin 8 (IL)-8 production by intestinal cancer cells, suggesting crosstalk occurs between these receptors in these cells. Furthermore, suppression of Fas in intestinal cancer cells reduced the ability of the intestinal pathogens, Salmonella typhimurium and Listeria monocytogenes to induce the expression of IL-8, suggesting that Fas signalling may play a role in intestinal host defence against pathogens. Inflammation is known to be important in colon tumourigenesis and Fas signalling on intestinal cancer cells has been shown to result in the production of inflammatory mediators. Fas-mediated signalling may therefore play a role in colon cancer development. Suppression of tumour-derived Fas by 85% led to a reduction in the tumour volume and changes in tumour infiltrating macrophages and neutrophils. TLR4 signalling has been shown to play a role in colon cancer via the recruitment and activation of alternatively activated immune cells. Given the crosstalk seen between Fas and TLR4 signalling in intestinal cancer cells in vitro, suppressing Fas signalling may enhance the efficacy of TLR4 antagonism in vivo. TLR4 antagonism resulted in smaller tumours with fewer infiltrating neutrophils. Whilst Fas downregulation did not significantly augment the ability of TLR4 antagonism to reduce the final tumour volume, Fas suppression may augment the anti-tumour effects of TLR4 antagonism as neutrophil infiltration was further reduced upon combinatorial treatment. Conclusion: Together, this study demonstrates evidence of a new role for Fas in the intestinal immune response and that manipulating Fas signalling has potential anti-tumour benefit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/Aim: It has been demonstrated that a number of pathologies occur as a result of dysregulation of the immune system. Whilst classically associated with apoptosis, the Fas (CD95) signalling pathway plays a role in inflammation. Studies have demonstrated that Fas activation augments TLR4-mediated MyD88-dependent cytokine production. Studies have also shown that the Fas adapter protein FADD is required for RIG-I-induced IFNβ production. As a similar signalling pathway exists between RIG-I, TLR3 and the MyD88- independent of TLR4, we hypothesised that Fas activation may modulate both TLR3- and TLR4-induced cytokine production. Results: Fas activation reduced poly I:C-induced IFNβ, IL-8, IL-10 and TNFα production whilst augmenting poly I:C-, poly A:U- and Sendai virus-induced IP-10 production. TLR3-, RIG-I- and MDA5-induced IP-10 luciferase activation were inhibited by the Fas adapter protein FADD using overexpression studies. Poly I:C-induced phosphorylation of p-38 and JNK MAPK were reduced by Fas activation. Overexpression of FADD induced AP-1 luciferase activation. Point mutations in the AP-1 binding site enhanced poly I:C-induced IP- 10 production. LPS-induced IL-10, IL-12, IL-8 and TNFα production were enhanced by Fas activation, whilst reducing LPS-induced IFNβ production. Absence of FADD using FADD-/- MEFs resulted in impaired IFNβ production. Overexpression studies using FADD augmented TLR4-, MyD88- and TRIF-induced IFNβ luciferase activation. Overexpression studies also suggested that enhanced TLR4-induced IFNβ production was independent of NFκB activation. Conclusion: Viral-induced IP-10 production is augmented by Fas activation by reducing the phosphorylation of p-38 and JNK MAPKs, modulating AP-1 activation. The Fas adapterprotein FADD is required for TLR4-induced IFNβ production. Studies presented here demonstrate that the Fas signalling pathway can therefore modulate the immune response. Our data demonstrates that this modulatory effect is mediated by its adapter protein FADD, tailoring the immune response by acting as a molecular switch. This ensures the appropriate immune response is mounted, thus preventing an exacerbated immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nuclear respiratory factor-1 (NRF1) gene is activated by lipopolysaccharide (LPS), which might reflect TLR4-mediated mitigation of cellular inflammatory damage via initiation of mitochondrial biogenesis. To test this hypothesis, we examined NRF1 promoter regulation by NFκB, and identified interspecies-conserved κB-responsive promoter and intronic elements in the NRF1 locus. In mice, activation of Nrf1 and its downstream target, Tfam, by Escherichia coli was contingent on NFκB, and in LPS-treated hepatocytes, NFκB served as an NRF1 enhancer element in conjunction with NFκB promoter binding. Unexpectedly, optimal NRF1 promoter activity after LPS also required binding by the energy-state-dependent transcription factor CREB. EMSA and ChIP assays confirmed p65 and CREB binding to the NRF1 promoter and p65 binding to intron 1. Functionality for both transcription factors was validated by gene-knockdown studies. LPS regulation of NRF1 led to mtDNA-encoded gene expression and expansion of mtDNA copy number. In cells expressing plasmid constructs containing the NRF-1 promoter and GFP, LPS-dependent reporter activity was abolished by cis-acting κB-element mutations, and nuclear accumulation of NFκB and CREB demonstrated dependence on mitochondrial H(2)O(2). These findings indicate that TLR4-dependent NFκB and CREB activation co-regulate the NRF1 promoter with NFκB intronic enhancement and redox-regulated nuclear translocation, leading to downstream target-gene expression, and identify NRF-1 as an early-phase component of the host antibacterial defenses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human centromeres are multi-megabase regions of highly ordered arrays of alpha satellite DNA that are separated from chromosome arms by unordered alpha satellite monomers and other repetitive elements. Complexities in assembling such large repetitive regions have limited detailed studies of centromeric chromatin organization. However, a genomic map of the human X centromere has provided new opportunities to explore genomic architecture of a complex locus. We used ChIP to examine the distribution of modified histones within centromere regions of multiple X chromosomes. Methylation of H3 at lysine 4 coincided with DXZ1 higher order alpha satellite, the site of CENP-A localization. Heterochromatic histone modifications were distributed across the 400-500 kb pericentromeric regions. The large arrays of alpha satellite and gamma satellite DNA were enriched for both euchromatic and heterochromatic modifications, implying that some pericentromeric repeats have multiple chromatin characteristics. Partial truncation of the X centromere resulted in reduction in the size of the CENP-A/Cenp-A domain and increased heterochromatic modifications in the flanking pericentromere. Although the deletion removed approximately 1/3 of centromeric DNA, the ratio of CENP-A to alpha satellite array size was maintained in the same proportion, suggesting that a limited, but defined linear region of the centromeric DNA is necessary for kinetochore assembly. Our results indicate that the human X centromere contains multiple types of chromatin, is organized similarly to smaller eukaryotic centromeres, and responds to structural changes by expanding or contracting domains.