975 resultados para memory processing
Resumo:
Analitzarem, mitjançant proves de codi que realitzen la mateixa tasca, dels diferentsFramework escollits, la seva eficiència (velocitat i memòria entre d'altres).
Resumo:
Brain perfusion can be assessed by CT and MR. For CT, two major techniques are used. First, Xenon CT is an equilibrium technique based on a freely diffusible tracer. First pass of iodinated contrast injected intravenously is a second method, more widely available. Both methods are proven to be robust and quantitative, thanks to the linear relationship between contrast concentration and x-ray attenuation. For the CT methods, concern regarding x-ray doses delivered to the patients need to be addressed. MR is also able to assess brain perfusion using the first pass of gadolinium based contrast agent injected intravenously. This method has to be considered as a semi-quantitative because of the non linear relationship between contrast concentration and MR signal changes. Arterial spin labeling is another MR method assessing brain perfusion without injection of contrast. In such case, the blood flow in the carotids is magnetically labelled by an external radiofrequency pulse and observed during its first pass through the brain. Each of this various CT and MR techniques have advantages and limits that will be illustrated and summarized.Learning Objectives:1. To understand and compare the different techniques for brain perfusion imaging.2. To learn about the methods of acquisition and post-processing of brain perfusion by first pass of contrast agent for CT and MR.3. To learn about non contrast MR methods (arterial spin labelling).
Resumo:
Estudi dels estàndards definits per l'Open Geospatial Consortium, i més concretament en l'estàndard Web Processing Service (wps). Així mateix, ha tingut una component pràctica que ha consistit en el disseny i desenvolupament d'un client capaç de consumir serveis Web creats segons wps i integrat a la plataforma gvSIG.
Resumo:
The objective of this paper is to propose a protocol to analyze blood samples in yellow fever 17DD vaccinated which developed serious adverse events. We investigated whether or not the time between sample collection and sample processing could interfere in lymphocyte subset percentage, for it is often impossible to analyze blood samples immediately after collection due to transport delay from collection places to the flow cytometry facility. CD4+CD38+ T, CD8+CD38+ T, CD3+ T, CD19+ B lymphocyte subsets were analyzed by flow cytometry in nine healthy volunteers immediately after blood collection and after intervals of 24 and 48 h. The whole blood lysis method and gradient sedimentation by Histopaque were applied to isolate peripheral blood mononuclear cells for flow cytometry analyses. With the lysis method, there was no significant change in lymphocyte subset percentage between the two time intervals (24 and 48 h). In contrast, when blood samples were processed by Histopaque gradient sedimentation, time intervals for sample processing influenced the percentage in T lymphocyte subsets but not in B cells. From the results obtained, we could conclude that the whole blood lysis method is more appropriate than gradient sedimentation by Histopaque for immunophenotyping of blood samples collected after serious adverse events, due to less variation in the lymphocyte subset levels with respect to the time factor.
Resumo:
In this article we describe a 41-year-old man who, following an operation to repair a ruptured anterior communicating artery aneurysm, manifested the "hallmark" features of a dysexecutive memory impairment. Of particular note was the patient's apparently normal level of recognition memory but impaired recall on tasks matched for difficulty in control subjects. However, further testing revealed that the patient's recognition memory was not normal under all circumstances. Implications of these data for the interpretation and further investigation of the dysexecutive deficit are discussed.
Resumo:
OBJECTIVE: We examined cognitive performance in children after stroke to study the influence of age at stroke, seizures, lesion characteristics, neurologic impairment (NI), and functional outcome on cognitive outcome. METHODS: This was a prospectively designed study conducted in 99 children who sustained an arterial ischemic stroke (AIS) between the age of 1 month and 16 years. All children underwent cognitive and neurologic follow-up examination sessions 2 years after the insult. Cognitive development was assessed with age-appropriate instruments. RESULTS: Although mean cognitive performance was in the lower normative range, we found poorer results in subtests measuring visuoconstructive skills, short-term memory, and processing speed. Risk factors for negative cognitive outcome were young age at stroke, seizures, combined lesion location (cortical and subcortical), as well as marked NI. CONCLUSIONS: We recommend that all children with a history of AIS undergo regularly scheduled neuropsychological assessment to ensure implementation of appropriate interventions and environmental adjustments as early as possible.
Resumo:
El artículo muestra, a través del estudio del caso del buscador semántico del portal Organic.Edunet, cómo el uso de tecnologías cerradas en la creación de interfaces avanzadas de visualización de datos impide su desarrollo y evolución. En el artículo se mostrará también cómo, combinado con técnicas para la medición y valoración de la usabilidad de las aplicaciones, el uso de tecnologías abiertas permite detectar los problemas del interface, proponer soluciones o alternativas, e implementarlas rápidamente.
Resumo:
Human electrophysiological studies support a model whereby sensitivity to so-called illusory contour stimuli is first seen within the lateral occipital complex. A challenge to this model posits that the lateral occipital complex is a general site for crude region-based segmentation, based on findings of equivalent hemodynamic activations in the lateral occipital complex to illusory contour and so-called salient region stimuli, a stimulus class that lacks the classic bounding contours of illusory contours. Using high-density electrical mapping of visual evoked potentials, we show that early lateral occipital cortex activity is substantially stronger to illusory contour than to salient region stimuli, whereas later lateral occipital complex activity is stronger to salient region than to illusory contour stimuli. Our results suggest that equivalent hemodynamic activity to illusory contour and salient region stimuli probably reflects temporally integrated responses, a result of the poor temporal resolution of hemodynamic imaging. The temporal precision of visual evoked potentials is critical for establishing viable models of completion processes and visual scene analysis. We propose that crude spatial segmentation analyses, which are insensitive to illusory contours, occur first within dorsal visual regions, not the lateral occipital complex, and that initial illusory contour sensitivity is a function of the lateral occipital complex.
Resumo:
A strategy to improve the immunogenicity of candidate vaccines is to trigger the innate immune system. Triggering of CD40 at the surface of dendritic cells (DC) is essential in the induction of an efficient immune response. Although CD40 agonist antibodies have been shown to be potent inducers of immune responses in experimental models, serious safety concerns have been raised for their use in humans. In addition, the production of soluble functional CD40 ligand has been challenging and the soluble form existing so far is not developed anymore. Here, we have evaluated the potency of a new soluble form of hexameric CD40 ligand (sCD40L) to serve as an adjuvant for anti-viral T cell responses. sCD40L was able to activate human DC and to enhance virus-specific memory T cell responses. These results demonstrate that this soluble form of CD40 ligand may serve as an adjuvant for T cell response and thus provide the rationale for its potential use in T cell based vaccine strategies.
Resumo:
Auditory spatial deficits occur frequently after hemispheric damage; a previous case report suggested that the explicit awareness of sound positions, as in sound localisation, can be impaired while the implicit use of auditory cues for the segregation of sound objects in noisy environments remains preserved. By assessing systematically patients with a first hemispheric lesion, we have shown that (1) explicit and/or implicit use can be disturbed; (2) impaired explicit vs. preserved implicit use dissociations occur rather frequently; and (3) different types of sound localisation deficits can be associated with preserved implicit use. Conceptually, the dissociation between the explicit and implicit use may reflect the dual-stream dichotomy of auditory processing. Our results speak in favour of systematic assessments of auditory spatial functions in clinical settings, especially when adaptation to auditory environment is at stake. Further, systematic studies are needed to link deficits of explicit vs. implicit use to disability in everyday activities, to design appropriate rehabilitation strategies, and to ascertain how far the explicit and implicit use of spatial cues can be retrained following brain damage.
Resumo:
Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs), RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines.
Resumo:
Understanding how nanoparticles may affect immune responses is an essential prerequisite to developing novel clinical applications. To investigate nanoparticle-dependent outcomes on immune responses, dendritic cells (DCs) were treated with model biomedical poly(vinylalcohol)-coated super-paramagnetic iron oxide nanoparticles (PVA-SPIONs). PVA-SPIONs uptake by human monocyte-derived DCs (MDDCs) was analyzed by flow cytometry (FACS) and advanced imaging techniques. Viability, activation, function, and stimulatory capacity of MDDCs were assessed by FACS and an in vitro CD4(+) T cell assay. PVA-SPION uptake was dose-dependent, decreased by lipopolysaccharide (LPS)-induced MDDC maturation at higher particle concentrations, and was inhibited by cytochalasin D pre-treatment. PVA-SPIONs did not alter surface marker expression (CD80, CD83, CD86, myeloid/plasmacytoid DC markers) or antigen-uptake, but decreased the capacity of MDDCs to process antigen, stimulate CD4(+) T cells, and induce cytokines. The decreased antigen processing and CD4(+) T cell stimulation capability of MDDCs following PVA-SPION treatment suggests that MDDCs may revert to a more functionally immature state following particle exposure.
Resumo:
The Wechsler Intelligence Scale for Children-fourth edition (i.e. WISC-IV) recognizes a four-factor scoring structure in addition to the Full Scale IQ (FSIQ) score: Verbal Comprehension (VCI), Perceptual Reasoning (PRI), Working Memory (WMI), and Processing Speed (PSI) indices. However, several authors suggested that models based on the Cattell-Horn-Carroll (CHC) theory with 5 or 6 factors provided a better fit to the data than does the current four-factor solution. By comparing the current four-factor structure to CHC-based models, this research aimed to investigate the factorial structure and the constructs underlying the WISC-IV subtest scores with French-speaking Swiss children (N = 249). To deal with this goal, confirmatory factor analyses (CFAs) were conducted. Results showed that a CHC-based model with five factors better fitted the French-Swiss data than did the current WISC-IV scoring structure. All together, these results support the hypothesis of the appropriateness of the CHC model with French-speaking children.