964 resultados para mechanical methods
Resumo:
During the course of several natural disasters in recent years, Twitter has been found to play an important role as an additional medium for many–to–many crisis communication. Emergency services are successfully using Twitter to inform the public about current developments, and are increasingly also attempting to source first–hand situational information from Twitter feeds (such as relevant hashtags). The further study of the uses of Twitter during natural disasters relies on the development of flexible and reliable research infrastructure for tracking and analysing Twitter feeds at scale and in close to real time, however. This article outlines two approaches to the development of such infrastructure: one which builds on the readily available open source platform yourTwapperkeeper to provide a low–cost, simple, and basic solution; and, one which establishes a more powerful and flexible framework by drawing on highly scaleable, state–of–the–art technology.
Resumo:
The design of pre-contoured fracture fixation implants (plates and nails) that correctly fit the anatomy of a patient utilises 3D models of long bones with accurate geometric representation. 3D data is usually available from computed tomography (CT) scans of human cadavers that generally represent the above 60 year old age group. Thus, despite the fact that half of the seriously injured population comes from the 30 year age group and below, virtually no data exists from these younger age groups to inform the design of implants that optimally fit patients from these groups. Hence, relevant bone data from these age groups is required. The current gold standard for acquiring such data–CT–involves ionising radiation and cannot be used to scan healthy human volunteers. Magnetic resonance imaging (MRI) has been shown to be a potential alternative in the previous studies conducted using small bones (tarsal bones) and parts of the long bones. However, in order to use MRI effectively for 3D reconstruction of human long bones, further validations using long bones and appropriate reference standards are required. Accurate reconstruction of 3D models from CT or MRI data sets requires an accurate image segmentation method. Currently available sophisticated segmentation methods involve complex programming and mathematics that researchers are not trained to perform. Therefore, an accurate but relatively simple segmentation method is required for segmentation of CT and MRI data. Furthermore, some of the limitations of 1.5T MRI such as very long scanning times and poor contrast in articular regions can potentially be reduced by using higher field 3T MRI imaging. However, a quantification of the signal to noise ratio (SNR) gain at the bone - soft tissue interface should be performed; this is not reported in the literature. As MRI scanning of long bones has very long scanning times, the acquired images are more prone to motion artefacts due to random movements of the subject‟s limbs. One of the artefacts observed is the step artefact that is believed to occur from the random movements of the volunteer during a scan. This needs to be corrected before the models can be used for implant design. As the first aim, this study investigated two segmentation methods: intensity thresholding and Canny edge detection as accurate but simple segmentation methods for segmentation of MRI and CT data. The second aim was to investigate the usability of MRI as a radiation free imaging alternative to CT for reconstruction of 3D models of long bones. The third aim was to use 3T MRI to improve the poor contrast in articular regions and long scanning times of current MRI. The fourth and final aim was to minimise the step artefact using 3D modelling techniques. The segmentation methods were investigated using CT scans of five ovine femora. The single level thresholding was performed using a visually selected threshold level to segment the complete femur. For multilevel thresholding, multiple threshold levels calculated from the threshold selection method were used for the proximal, diaphyseal and distal regions of the femur. Canny edge detection was used by delineating the outer and inner contour of 2D images and then combining them to generate the 3D model. Models generated from these methods were compared to the reference standard generated using the mechanical contact scans of the denuded bone. The second aim was achieved using CT and MRI scans of five ovine femora and segmenting them using the multilevel threshold method. A surface geometric comparison was conducted between CT based, MRI based and reference models. To quantitatively compare the 1.5T images to the 3T MRI images, the right lower limbs of five healthy volunteers were scanned using scanners from the same manufacturer. The images obtained using the identical protocols were compared by means of SNR and contrast to noise ratio (CNR) of muscle, bone marrow and bone. In order to correct the step artefact in the final 3D models, the step was simulated in five ovine femora scanned with a 3T MRI scanner. The step was corrected using the iterative closest point (ICP) algorithm based aligning method. The present study demonstrated that the multi-threshold approach in combination with the threshold selection method can generate 3D models from long bones with an average deviation of 0.18 mm. The same was 0.24 mm of the single threshold method. There was a significant statistical difference between the accuracy of models generated by the two methods. In comparison, the Canny edge detection method generated average deviation of 0.20 mm. MRI based models exhibited 0.23 mm average deviation in comparison to the 0.18 mm average deviation of CT based models. The differences were not statistically significant. 3T MRI improved the contrast in the bone–muscle interfaces of most anatomical regions of femora and tibiae, potentially improving the inaccuracies conferred by poor contrast of the articular regions. Using the robust ICP algorithm to align the 3D surfaces, the step artefact that occurred by the volunteer moving the leg was corrected, generating errors of 0.32 ± 0.02 mm when compared with the reference standard. The study concludes that magnetic resonance imaging, together with simple multilevel thresholding segmentation, is able to produce 3D models of long bones with accurate geometric representations. The method is, therefore, a potential alternative to the current gold standard CT imaging.
Resumo:
In recent times, light gauge steel framed (LSF) structures, such as cold-formed steel wall systems, are increasingly used, but without a full understanding of their fire performance. Traditionally the fire resistance rating of these load-bearing LSF wall systems is based on approximate prescriptive methods developed based on limited fire tests. Very often they are limited to standard wall configurations used by the industry. Increased fire rating is provided simply by adding more plasterboards to these walls. This is not an acceptable situation as it not only inhibits innovation and structural and cost efficiencies but also casts doubt over the fire safety of these wall systems. Hence a detailed fire research study into the performance of LSF wall systems was undertaken using full scale fire tests and extensive numerical studies. A new composite wall panel developed at QUT was also considered in this study, where the insulation was used externally between the plasterboards on both sides of the steel wall frame instead of locating it in the cavity. Three full scale fire tests of LSF wall systems built using the new composite panel system were undertaken at a higher load ratio using a gas furnace designed to deliver heat in accordance with the standard time temperature curve in AS 1530.4 (SA, 2005). Fire tests included the measurements of load-deformation characteristics of LSF walls until failure as well as associated time-temperature measurements across the thickness and along the length of all the specimens. Tests of LSF walls under axial compression load have shown the improvement to their fire performance and fire resistance rating when the new composite panel was used. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. The numerical study was undertaken using a finite element program ABAQUS. The finite element analyses were conducted under both steady state and transient state conditions using the measured hot and cold flange temperature distributions from the fire tests. The elevated temperature reduction factors for mechanical properties were based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). These finite element models were first validated by comparing their results with experimental test results from this study and Kolarkar (2010). The developed finite element models were able to predict the failure times within 5 minutes. The validated model was then used in a detailed numerical study into the strength of cold-formed thin-walled steel channels used in both the conventional and the new composite panel systems to increase the understanding of their behaviour under nonuniform elevated temperature conditions and to develop fire design rules. The measured time-temperature distributions obtained from the fire tests were used. Since the fire tests showed that the plasterboards provided sufficient lateral restraint until the failure of LSF wall panels, this assumption was also used in the analyses and was further validated by comparison with experimental results. Hence in this study of LSF wall studs, only the flexural buckling about the major axis and local buckling were considered. A new fire design method was proposed using AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated. A spread sheet based design tool was developed based on the above design codes to predict the failure load ratio versus time and temperature for varying LSF wall configurations including insulations. Idealised time-temperature profiles were developed based on the measured temperature values of the studs. This was used in a detailed numerical study to fully understand the structural behaviour of LSF wall panels. Appropriate equations were proposed to find the critical temperatures for different composite panels, varying in steel thickness, steel grade and screw spacing for any load ratio. Hence useful and simple design rules were proposed based on the current cold-formed steel structures and fire design standards, and their accuracy and advantages were discussed. The results were also used to validate the fire design rules developed based on AS/NZS 4600 (SA, 2005) and Eurocode Part 1.3 (ECS, 2006). This demonstrated the significant improvements to the design method when compared to the currently used prescriptive design methods for LSF wall systems under fire conditions. In summary, this research has developed comprehensive experimental and numerical thermal and structural performance data for both the conventional and the proposed new load bearing LSF wall systems under standard fire conditions. Finite element models were developed to predict the failure times of LSF walls accurately. Idealized hot flange temperature profiles were developed for non-insulated, cavity and externally insulated load bearing wall systems. Suitable fire design rules and spread sheet based design tools were developed based on the existing standards to predict the ultimate failure load, failure times and failure temperatures of LSF wall studs. Simplified equations were proposed to find the critical temperatures for varying wall panel configurations and load ratios. The results from this research are useful to both structural and fire engineers and researchers. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF loadbearing walls under standard fire conditions.
Resumo:
Volume measurements are useful in many branches of science and medicine. They are usually accomplished by acquiring a sequence of cross sectional images through the object using an appropriate scanning modality, for example x-ray computed tomography (CT), magnetic resonance (MR) or ultrasound (US). In the cases of CT and MR, a dividing cubes algorithm can be used to describe the surface as a triangle mesh. However, such algorithms are not suitable for US data, especially when the image sequence is multiplanar (as it usually is). This problem may be overcome by manually tracing regions of interest (ROIs) on the registered multiplanar images and connecting the points into a triangular mesh. In this paper we describe and evaluate a new discreet form of Gauss’ theorem which enables the calculation of the volume of any enclosed surface described by a triangular mesh. The volume is calculated by summing the vector product of the centroid, area and normal of each surface triangle. The algorithm was tested on computer-generated objects, US-scanned balloons, livers and kidneys and CT-scanned clay rocks. The results, expressed as the mean percentage difference ± one standard deviation were 1.2 ± 2.3, 5.5 ± 4.7, 3.0 ± 3.2 and −1.2 ± 3.2% for balloons, livers, kidneys and rocks respectively. The results compare favourably with other volume estimation methods such as planimetry and tetrahedral decomposition.
Resumo:
A system is described for calculating volume from a sequence of multiplanar 2D ultrasound images. Ultrasound images are captured using a video digitising card (Hauppauge Win/TV card) installed in a personal computer, and regions of interest transformed into 3D space using position and orientation data obtained from an electromagnetic device (Polbemus, Fastrak). The accuracy of the system was assessed by scanning 10 water filled balloons (13-141 ml), 10 kidneys (147 200 ml) and 16 fetal livers (8 37 ml) in water using an Acuson 128XP/10 (5 MHz curvilinear probe). Volume was calculated using the ellipsoid, planimetry, tetrahedral and ray tracing methods and compared with the actual volume measured by weighing (balloons) and water displacement (kidneys and livers). The mean percentage error for the ray tracing method was 0.9 ± 2.4%, 2.7 ± 2.3%, 6.6 ± 5.4% for balloons, kidneys and livers, respectively. So far the system has been used clinically to scan fetal livers and lungs, neonate brain ventricles and adult prostate glands.
Resumo:
A new system is described for estimating volume from a series of multiplanar 2D ultrasound images. Ultrasound images are captured using a personal computer video digitizing card and an electromagnetic localization system is used to record the pose of the ultrasound images. The accuracy of the system was assessed by scanning four groups of ten cadaveric kidneys on four different ultrasound machines. Scan image planes were oriented either radially, in parallel or slanted at 30 C to the vertical. The cross-sectional images of the kidneys were traced using a mouse and the outline points transformed to 3D space using the Fastrak position and orientation data. Points on adjacent region of interest outlines were connected to form a triangle mesh and the volume of the kidneys estimated using the ellipsoid, planimetry, tetrahedral and ray tracing methods. There was little difference between the results for the different scan techniques or volume estimation algorithms, although, perhaps as expected, the ellipsoid results were the least precise. For radial scanning and ray tracing, the mean and standard deviation of the percentage errors for the four different machines were as follows: Hitachi EUB-240, −3.0 ± 2.7%; Tosbee RM3, −0.1 ± 2.3%; Hitachi EUB-415, 0.2 ± 2.3%; Acuson, 2.7 ± 2.3%.
Resumo:
There has been substantial interest within the Australian sugar industry in product diversification as a means to reduce its exposure to fluctuating raw sugar prices and in order to increase its commercial viability. In particular, the industry is looking at fibrous residues from sugarcane harvesting (trash) and from sugarcane milling (bagasse) for cogeneration and the production of biocommodities, as these are complementary to the core process of sugar production. A means of producing surplus residue (biomass) is to process whole sugarcane crop. In this paper, the composition of different juices derived from different harvesting methods, viz. burnt cane with all trash extracted (BE), green cane with half of the trash extracted (GE), and green cane (whole sugarcane crop) with trash unextracted (GU), were investigated and the results and comparison presented. The determination of electrical conductivity, inorganic composition, and organic acids indicate that both GU and GE cane juice contain a higher proportion of soluble inorganic ions and ionisable organic acids, compared to BE cane juice. It is important to note that there are considerably higher levels of Na ions and citric acid, but relatively low P levels in the GU samples. A higher level of reducing sugars was analysed in the GU samples than the BE samples due to the higher proportion of impurities found naturally in sugarcane tops and leaves. The purity of the first expressed juice (FEJ) of GU cane was on average higher than that of FEJ of BE cane. Results also show that GU juices appear to contain higher levels of proteins and polysaccharides, with no significant difference in starch levels.
Resumo:
Background: Despite the increasing clinical problems with metaphyseal fractures, most experimental studies investigate the healing of diaphyseal fractures. Although the mouse would be the preferable species to study the molecular and genetic aspects of metaphyseal fracture healing, a murine model does not exist yet. Using a special locking plate system, we herein introduce a new model, which allows the analysis of metaphyseal bone healing in mice. Methods: In 24 CD-1 mice the distal metaphysis of the femur was osteotomized. After stabilization with the locking plate, bone repair was analyzed radiologically, biomechanically, and histologically after 2 (n = 12) and 5 wk (n = 12). Additionally, the stiffness of the bone-implant construct was tested biomechanically ex vivo. Results: The torsional stiffness of the bone-implant construct was low compared with nonfractured control femora (0.23 ± 0.1 Nmm/°versus 1.78 ± 0.15 Nmm/°, P < 0.05). The cause of failure was a pullout of the distal screw. At 2 wk after stabilization, radiological analysis showed that most bones were partly bridged. At 5 wk, all bones showed radiological union. Accordingly, biomechanical analyses revealed a significantly higher torsional stiffness after 5 wk compared with that after 2 wk. Successful healing was indicated by a torsional stiffness of 90% of the contralateral control femora. Histological analyses showed new woven bone bridging the osteotomy without external callus formation and in absence of any cartilaginous tissue, indicating intramembranous healing. Conclusion: With the model introduced herein we report, for the first time, successful metaphyseal bone repair in mice. The model may be used to obtain deeper insights into the molecular mechanisms of metaphyseal fracture healing. © 2012 Elsevier Inc. All rights reserved.
Resumo:
Study Design. A sheep study designed to compare the accuracy of static radiographs, dynamic radiographs, and computed tomographic (CT) scans for the assessment of thoracolumbar facet joint fusion as determined by micro-CT scanning. Objective. To determine the accuracy and reliability of conventional imaging techniques in identifying the status of thoracolumbar (T13-L1) facet joint fusion in a sheep model. Summary of Background Data. Plain radiographs are commonly used to determine the integrity of surgical arthrodesis of the thoracolumbar spine. Many previous studies of fusion success have relied solely on postoperative assessment of plain radiographs, a technique lacking sensitivity for pseudarthrosis. CT may be a more reliable technique, but is less well characterized. Methods. Eleven adult sheep were randomized to either attempted arthrodesis using autogenous bone graft and internal fixation (n = 3) or intentional pseudarthrosis (IP) using oxidized cellulose and internal fixation (n = 8). After 6 months, facet joint fusion was assessed by independent observers, using (1) plain static radiography alone, (2) additional dynamic radiographs, and (3) additional reconstructed spiral CT imaging. These assessments were correlated with high-resolution micro-CT imaging to predict the utility of the conventional imaging techniques in the estimation of fusion success. Results. The capacity of plain radiography alone to correctly predict fusion or pseudarthrosis was 43% and was not improved using plain radiography and dynamic radiography with also a 43% accuracy. Adding assessment by reformatted CT imaging to the plain radiography techniques increased the capacity to predict fusion outcome to 86% correctly. The sensitivity, specificity, and accuracy of static radiography were 0.33, 0.55, and 0.43, respectively, those of dynamic radiography were 0.46, 0.40, and 0.43, respectively, and those of radiography plus CT were 0.88, 0.85, and 0.86, respectively. Conclusion. CT-based evaluation correlated most closely with high-resolution micro-CT imaging. Neither plain static nor dynamic radiographs were able to predict fusion outcome accurately. © 2012 Lippincott Williams & Wilkins.
Resumo:
The presence of colour in raw sugar plays a key role in the marketing strategy of the Australian raw sugar industry. Some sugars are relatively difficult to decolourise during refining and develop colour during storage. A new approach that might result in efficient and cost-effective colour removal during the sugar manufacturing process is the use of an advanced oxidation process (AOP), known as Fenton oxidation, that is, catalytic production of hydroxyl radicals from the decomposition of hydrogen peroxide using ferrous iron. As a first step towards developing this technology, this study determined the composition of colour precursors present in the juice of cane harvested by three different methods. The methods were harvesting cane after burning, harvesting the whole crop with half of the trash extracted and harvesting the whole crop with no trash extracted. The study also investigated the degradation at pH 3, 4 and 5 of a phenolic compound, caffeic acid (3,4–dihydroxycinnamic acid), which is present in sugar cane juice, using both hydrogen peroxide and Fenton’s reagent. The results show that juice expressed from whole crop cane has significantly higher colour than juices expressed from burnt cane. However, the concentrations of phenolic acids were lower in the juices expressed from whole crop cane. The main phenolic acids present in these juices were p-coumaric, vanillic, 2,3–dihydroxybenzoic, gallic and 3,4–dihydroxybenzoic acids. The degradation of caffeic acid significantly improved using Fenton’s reagent in comparison to hydrogen peroxide alone. The Fenton oxidation was optimum at pH 5 when up to ~86 % of caffeic acid degraded within 5 min.
Resumo:
The aim of this study was to prepare and characterise composites of Soluble potato starch or hydroxypropylated maize starch with milled sugar cane fibre (i.e., bagasse). Prior to the preparation of the starch-fibre composites, the ‘cast’ and the ‘hot-pressed’ methods were investigated for the preparation of starch films in order to select the preferred preparation method. The physicochemical and mechanical properties of films conditioned at different relative humidities (RHs) were determined through moisture uptake, crystallinity, glass transition temperature (Tg), thermal properties, molecular structure and tensile tests. Hot-pressed starch films have ~5.5% less moisture, twice the crystallinity (~59%), higher Tg and Young’s modulus than cast starch films. The VH-type starch polymorph was observed to be present in the hot-pressed films. The addition of bagasse fibre to both starch types, prepared by hot-pressing, reduced the moisture uptake by up to 30% (cf., cast film) at 58% RH. The addition of 5 wt% fibre increased the tensile strength and Young’s modulus by 16% and 24% respectively. It significantly decreased the tensile strain by ~53%. Fourier Transform infrared (FT-IR) spectroscopy revealed differences in hydrogen bonding capacity between the films with fibre and those without fibre. The results have been explained on the basis of the intrinsic properties of starch and bagasse fibres.
Resumo:
The presence of colour in raw sugar plays a key role in the marketing strategy of the Australian raw sugar industry. Some sugars are relatively difficult to decolourise during refining and develop colour during storage. A new approach that might result in efficient and cost-effective colour removal during the sugar manufacturing process is the use of an advanced oxidation process (AOP), known as Fenton oxidation, that is, catalytic production of hydroxyl radicals from the decomposition of hydrogen peroxide using ferrous iron. As a first step towards developing this technology, this study determined the composition of colour precursors present in the juice of cane harvested by three different methods. The methods were harvesting cane after burning, harvesting the whole crop with half of the trash extracted and harvesting the whole crop with no trash extracted. The study also investigated the degradation at pH 3, 4 and 5 of a phenolic compound, caffeic acid (3,4–dihydroxycinnamic acid), which is present in sugar cane juice, using both hydrogen peroxide and Fenton’s reagent. The results show that juice expressed from whole crop cane has significantly higher colour than juices expressed from burnt cane. However, the concentrations of phenolic acids were lower in the juices expressed from whole crop cane. The main phenolic acids present in these juices were p-coumaric, vanillic, 2,3–dihydroxybenzoic, gallic and 3,4–dihydroxybenzoic acids. The degradation of caffeic acid significantly improved using Fenton’s reagent in comparison to hydrogen peroxide alone. The Fenton oxidation was optimum at pH 5 when up to ~86% of caffeic acid degraded within 5 min.
Resumo:
Purpose: To study the effect of the size of the surface-coated polycaprolactone (PCL) microparticle carriers on the aerosolization and dispersion of Salbutamol Sulfate (SS) from Dry Powder Inhaler (DPI) formulations. Methods: The microparticles were fabricated using an emulsion technique in four different sizes (25, 48, 104 and 150 μm) and later coated with Magnesium stearate (MgSt) and leucine. They were characterized by laser diffraction and SEM. The Fine Particle Fraction (FPF) of SS from powder mixtures was determined by a Twin Stage Impinger (TSI). Results: As the carrier size increased from 25 μm to 150 μm, the FPF of the SS delivered by the coated PCL particles increased approximately four fold. A linear relationship was found between the FPF and Volume mean Diameter (VMD) of the particles over this range. Conclusions: The dispersion behaviour of SS from PCL carriers was dependent on the inherent size of the carriers and the increased FPF of SS with increased carrier size probably reflects the higher mechanical forces produced due to the carrier-carrier collisions or collisions between the carrier particles and the internal walls of the inhaler during aerosolization.
Resumo:
Background Screening tests of basic cognitive status or ‘mental state’ have been shown to predict mortality and functional outcomes in adults. This study examined the relationship between mental state and outcomes in children with type 1 diabetes. Objective We aimed to determine whether mental state at diagnosis predicts longer term cognitive function of children with a new diagnosis of type 1 diabetes. Methods Mental state of 87 patients presenting with newly diagnosed type 1 diabetes was assessed using the School-Years Screening Test for the Evaluation of Mental Status. Cognitive abilities were assessed 1 wk and 6 months postdiagnosis using standardized tests of attention, memory, and intelligence. Results Thirty-seven children (42.5%) had reduced mental state at diagnosis. Children with impaired mental state had poorer attention and memory in the week following diagnosis, and, after controlling for possible confounding factors, significantly lower IQ at 6 months compared to those with unimpaired mental state (p < 0.05). Conclusions Cognition is impaired acutely in a significant number of children presenting with newly diagnosed type 1 diabetes. Mental state screening is an effective method of identifying children at risk of ongoing cognitive difficulties in the days and months following diagnosis. Clinicians may consider mental state screening for all newly diagnosed diabetic children to identify those at risk of cognitive sequelae.
Resumo:
This paper discusses commonly encountered diesel engine problems and the underlying combustion related faults. Also discussed are the methods used in previous studies to simulate diesel engine faults and the initial results of an experimental simulation of a common combustion related diesel engine fault, namely diesel engine misfire. This experimental fault simulation represents the first step towards a comprehensive investigation and analysis into the characteristics of acoustic emission signals arising from combustion related diesel engine faults. Data corresponding to different engine running conditions was captured using in-cylinder pressure, vibration and acoustic emission transducers along with both crank-angle encoder and top-dead centre signals. Using these signals, it was possible to characterise the diesel engine in-cylinder pressure profiles and the effect of different combustion conditions on both vibration and acoustic emission signals.