959 resultados para mean pressure gradient.
Resumo:
The physical (temperature, salinity, velocity) and biogeochemical (oxygen, nitrate) structure of an oxygen depleted coherent, baroclinic, anticyclonic mode-water eddy (ACME) is investigated using high-resolution autonomous glider and ship data. A distinct core with a diameter of about 70 km is found in the eddy, extending from about 60 to 200 m depth and. The core is occupied by fresh and cold water with low oxygen and high nitrate concentrations, and bordered by local maxima in buoyancy frequency. Velocity and property gradient sections show vertical layering at the flanks and underneath the eddy characteristic for vertical propagation (to several hundred-meters depth) of near inertial internal waves (NIW) and confirmed by direct current measurements. A narrow region exists at the outer edge of the eddy where NIW can propagate downward. NIW phase speed and mean flow are of similar magnitude and critical layer formation is expected to occur. An asymmetry in the NIW pattern is seen that possible relates to the large-scale Ekman transport interacting with ACME dynamics. NIW/mean flow induced mixing occurs close to the euphotic zone/mixed layer and upward nutrient flux is expected and supported by the observations. Combing high resolution nitrate (NO3-) data with the apparent oxygen utilization (AOU) reveals AOU:NO3- ratios of 16 which are much higher than in the surrounding waters (8.1). A maximum NO3- deficit of 4 to 6 µmol kg-1 is estimated for the low oxygen core. Denitrification would be a possible explanation. This study provides evidence that the recycling of NO3-, extracted from the eddy core and replenished into the core via the particle export, may quantitatively be more important. In this case, the particulate phase is of keys importance in decoupling the nitrogen from the oxygen cycling.
Resumo:
Changes in phenotypic traits, such as mollusc shells, are indicative of variations in selective pressure along environmental gradients. Recently, increased sea surface temperature (SST) and ocean acidification (OA) due to increased levels of carbon dioxide in the seawater have been described as selective agents that may affect the biological processes underlying shell formation in calcifying marine organisms. The benthic snail Concholepas concholepas (Muricidae) is widely distributed along the Chilean coast, and so is naturally exposed to a strong physical-chemical latitudinal gradient. In this study, based on elliptical Fourier analysis, we assess changes in shell morphology (outlines analysis) in juvenile C. concholepas collected at northern (23°S), central (33°S) and southern (39°S) locations off the Chilean coast. Shell morphology of individuals collected in northern and central regions correspond to extreme morphotypes, which is in agreement with both the observed regional differences in the shell apex outlines, the high reclassification success of individuals (discriminant function analysis) collected in these regions, and the scaling relationship in shell weight variability among regions. However, these extreme morphotypes showed similar patterns of mineralization of calcium carbonate forms (calcite and aragonite). Geographical variability in shell shape of C. concholepas described by discriminant functions was partially explained by environmental variables (pCO2, SST). This suggests the influence of corrosive waters, such as upwelling and freshwaters penetrating into the coastal ocean, upon spatial variation in shell morphology. Changes in the proportion of calcium carbonate forms precipitated by C. concholepas across their shells and its susceptibility to corrosive coastal waters are discussed.
Resumo:
A natural pH gradient caused by marine CO2 seeps off Vulcano Island (Italy) was used to assess the effects of ocean acidification on coccolithophores, which are abundant planktonic unicellular calcifiers. Such seeps are used as natural laboratories to study the effects of ocean acidification on marine ecosystems, since they cause long-term changes in seawater carbonate chemistry and pH, exposing the organisms to elevated CO2 concentrations and therefore mimicking future scenarios. Previous work at CO2 seeps has focused exclusively on benthic organisms. Here we show progressive depletion of 27 coccolithophore species, in terms of cell concentrations and diversity, along a calcite saturation gradient from Omega calcite 6.4 to <1. Water collected close to the main CO2 seeps had the highest concentrations of malformed Emiliania huxleyi. These observations add to a growing body of evidence that ocean acidification may benefit some algae but will likely cause marine biodiversity loss, especially by impacting calcifying species, which are affected as carbonate saturation falls.
Resumo:
This data set contains measurements of plant height: vegetative height (heighest leaf) and regenerative height (heighest flower) in 2007 from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the Main Experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2007, plant height was recorded twice a year just before biomass harvest (during peak standing biomass in late May and in late August). For target plant individuals at 10 points separated by 1 m each along a transect in the central area in the plots, vegetative height (heighest leaf) and regenerative height (heighest flower) were measured as standing height (without stretching the plant). In 2007, also the plots of the management experiment, that altered mowing frequency and fertilized subplots (see further details below) were sampled by measuring vegatation height five times, every 0.5m on a 3m transekt along the side of the management plots. Provided are the individual measurements and the mean over the measured plants.
Resumo:
This data set contains measurements of plant height: vegetative height (heighest leaf) and regenerative height (heighest flower) in 2008 from the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the Main Experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. In 2008, plant height was recorded twice a year just before biomass harvest (during peak standing biomass in late May and in late August). For target plant individuals at 10 points separated by 1 m each along a transect in the central area in the plots, vegetative height (heighest leaf) and regenerative height (heighest flower) were measured as standing height (without stretching the plant). In 2008, also the plots of the management experiment, that altered mowing frequency and fertilized subplots (see further details below) were sampled by measuring vegatation height five times, every 1m on a 5m transekt along the side of the management plots. Provided are the individual measurements and the mean over the measured plants.