745 resultados para mathematics
Resumo:
This study analyzed three fifth grade students’ misconceptions and error patterns when working with equivalence, addition and subtraction of fractions. The findings revealed that students used both conceptual and procedural knowledge to solve the problems. They used pictures, gave examples, and made connections to other mathematical concepts and to daily life topics. Error patterns found include using addition and subtraction of numerators and denominators, and finding the greatest common factor.
Resumo:
This study examined the effectiveness of intelligent tutoring system instruction, grounded in John Anderson's ACT theory of cognition, on the achievement and attitude of developmental mathematics students in the community college setting. The quasi-experimental research used a pretest-posttest control group design. The dependent variables were problem solving achievement, overall achievement, and attitude towards mathematics. The independent variable was instructional method. Four intact classes and two instructors participated in the study for one semester. Two classes (n = 35) served as experimental groups; they received six lessons with real-world problems using intelligent tutoring system instruction. The other two classes (n = 24) served as control groups; they received six lessons with real-world problems using traditional instruction including graphing calculator support. It was hypothesized that students taught problem solving using the intelligent tutoring system would achieve more on the dependent variables than students taught without the intelligent tutoring system. Posttest mean scores for one teacher produced a significant difference in overall achievement for the experimental group. The same teacher had higher means, not significantly, for the experimental group in problem solving achievement. The study did not indicate a significant difference in attitude mean scores. It was concluded that using an intelligent tutoring system in problem solving instruction may impact student's overall mathematics achievement and problem solving achievement. Other factors must be considered, such as the teacher's classroom experience, the teacher's experience with the intelligent tutoring system, trained technical support, and trained student support; as well as student learning styles, motivation, and overall mathematics ability.
Resumo:
The purpose of this study was to examine the effects of the use of technology on students’ mathematics achievement, particularly the Florida Comprehensive Assessment Test (FCAT) mathematics results. Eleven schools within the Miami-Dade County Public School System participated in a pilot program on the use of Geometers Sketchpad (GSP). Three of these schools were randomly selected for this study. Each school sent a teacher to a summer in-service training program on how to use GSP to teach geometry. In each school, the GSP class and a traditional geometry class taught by the same teacher were the study participants. Students’ mathematics FCAT results were examined to determine if the GSP produced any effects. Students’ scores were compared based on assignment to the control or experimental group as well as gender and SES. SES measurements were based on whether students qualified for free lunch. The findings of the study revealed a significant difference in the FCAT mathematics scores of students who were taught geometry using GSP compared to those who used the traditional method. No significant differences existed between the FCAT mathematics scores of the students based on SES. Similarly, no significant differences existed between the FCAT scores based on gender. In conclusion, the use of technology (particularly GSP) is likely to boost students’ FCAT mathematics test scores. The findings also show that the use of GSP may be able to close known gender and SES related achievement gaps. The results of this study promote policy changes in the way geometry is taught to 10th grade students in Florida’s public schools.
The impact of standards-based practices in mathematics on the achievement of low-performing students
Resumo:
This study examined standards-based mathematics reform initiatives to determine if they would improve student achievement on the part of low-performing students. New curricula, the Carnegie Learning Cognitive Tutor®, were provided for algebra and geometry students. The new instructional strategy relied on both the teacher-led instruction and the use of computers to differentiate instruction for individual students. Mathematics teachers received ongoing professional development to help them implement the new curricula. In addition, teachers were provided with ongoing support to assist them with the transformation of the learning environments for students using standards-based practices. This quasi-experimental (nonrandomized) study involved teachers in two matched urban high schools. Analyses (ANCOVAs) revealed that the experimental group with an appropriately implemented program had significantly higher learning gains than the comparison group as determined by the students' 2007 mathematics Developmental Scale Score (DSS). In addition, the experimental group's adjusted mean for the second interim mathematics assessment was significantly higher than the comparison group's mean. The findings support the idea that if the traditional curriculum is replaced with standards-based curriculum, and the curriculum is implemented as intended, low-performing students may make significant learning gains. With respect to the teaching practices as observed with the Classroom Observation Protocol (COP), t-tests were conducted on four constructs. The results for both the algebra and geometry teachers on the constructs were not significant. The COP indicated that teachers in both the experimental and comparison groups used traditional instruction strategies in their classrooms. The analyses of covariance (ANCOVA) on the use of technology revealed no significant main effects for computer use.
Resumo:
The semantic model developed in this research was in response to the difficulty a group of mathematics learners had with conventional mathematical language and their interpretation of mathematical constructs. In order to develop the model ideas from linguistics, psycholinguistics, cognitive psychology, formal languages and natural language processing were investigated. This investigation led to the identification of four main processes: the parsing process, syntactic processing, semantic processing and conceptual processing. The model showed the complex interdependency between these four processes and provided a theoretical framework in which the behaviour of the mathematics learner could be analysed. The model was then extended to include the use of technological artefacts into the learning process. To facilitate this aspect of the research, the theory of instrumentation was incorporated into the semantic model. The conclusion of this research was that although the cognitive processes were interdependent, they could develop at different rates until mastery of a topic was achieved. It also found that the introduction of a technological artefact into the learning environment introduced another layer of complexity, both in terms of the learning process and the underlying relationship between the four cognitive processes.
Resumo:
A constructivist philosophy underlies the Irish primary mathematics curriculum. As constructivism is a theory of learning its implications for teaching need to be addressed. This study explores the experiences of four senior class primary teachers as they endeavour to teach mathematics from a constructivist-compatible perspective with primary school children in Ireland over a school-year period. Such a perspective implies that children should take ownership of their learning while working in groups on tasks which challenge them at their zone of proximal development. The key question on which the research is based is: to what extent will an exposure to constructivism and its implications for the classroom impact on teaching practices within the senior primary mathematics classroom in both the short and longer term? Although several perspectives on constructivism have evolved (von Glaserfeld (1995), Cobb and Yackel (1996), Ernest (1991,1998)), it is the synthesis of the emergent perspective which becomes pivotal to the Irish primary mathematics curriculum. Tracking the development of four primary teachers in a professional learning initiative involving constructivist-compatible approaches necessitated the use of Borko’s (2004) Phase 1 research methodology to account for the evolution in teachers’ understanding of constructivism. Teachers’ and pupils’ viewpoints were recorded using both audio and video technology. Teachers were interviewed at the beginning and end of the project and also one year on to ascertain how their views had evolved. Pupils were interviewed at the end of the project only. The data were analysed from a Jaworskian perspective i.e. using the categories of her Teaching Triad of management of learning, mathematical challenge and sensitivity to students. Management of learning concerns how the teacher organises her classroom to maximise learning opportunities for pupils. Mathematical challenge is reminiscent of the Vygotskian (1978) construct of the zone of proximal development. Sensitivity to students involves a consciousness on the part of the teacher as to how pupils are progressing with a mathematical task and whether or not to intervene to scaffold their learning. Through this analysis a synthesis of the teachers’ interpretations of constructivist philosophy with concomitant implications for theory, policy and practice emerges. The study identifies strategies for teachers wishing to adopt a constructivist-compatible approach to their work. Like O’Shea (2009) it also highlights the likely difficulties to be experienced by such teachers as they move from utilising teacher-dominated methods of teaching mathematics to ones in which pupils have more ownership over their learning.
Resumo:
For the past several years, U.S. colleges and universities have faced increased pressure to improve retention and graduation rates. At the same time, educational institutions have placed a greater emphasis on the importance of enrolling more students in STEM (science, technology, engineering and mathematics) programs and producing more STEM graduates. The resulting problem faced by educators involves finding new ways to support the success of STEM majors, regardless of their pre-college academic preparation. The purpose of my research study involved utilizing first-year STEM majors’ math SAT scores, unweighted high school GPA, math placement test scores, and the highest level of math taken in high school to develop models for predicting those who were likely to pass their first math and science courses. In doing so, the study aimed to provide a strategy to address the challenge of improving the passing rates of those first-year students attempting STEM-related courses. The study sample included 1018 first-year STEM majors who had entered the same large, public, urban, Hispanic-serving, research university in the Southeastern U.S. between 2010 and 2012. The research design involved the use of hierarchical logistic regression to determine the significance of utilizing the four independent variables to develop models for predicting success in math and science. The resulting data indicated that the overall model of predictors (which included all four predictor variables) was statistically significant for predicting those students who passed their first math course and for predicting those students who passed their first science course. Individually, all four predictor variables were found to be statistically significant for predicting those who had passed math, with the unweighted high school GPA and the highest math taken in high school accounting for the largest amount of unique variance. Those two variables also improved the regression model’s percentage of correctly predicting that dependent variable. The only variable that was found to be statistically significant for predicting those who had passed science was the students’ unweighted high school GPA. Overall, the results of my study have been offered as my contribution to the literature on predicting first-year student success, especially within the STEM disciplines.
Resumo:
Math anxiety levels and performance outcomes were compared for bilingual and monolingual community college Intermediate Algebra students attending a culturally diverse urban commuter college. Participants (N = 618, 250 men, 368 women; 361 monolingual, 257 bilingual) completed the Abbreviated Math Anxiety Scale (AMAS) and a demographics instrument. Bilingual and monolingual students reported comparable mean AMAS scores (20.6 and 20.7, respectively) and comparable proportions of math anxious individuals (50% and 48%, respectively). Factor analysis of AMAS scores, using principal component analysis by varimax rotation, yielded similar two-factor structures for both populations -- assessment and learning content -- accounting for 65.6% of the trace for bilingual AMAS scores. Statistically significant predictor variables for levels of math anxiety for the bilingual participants included (a) preparatory course enrollment (β = .236, p = .041) with those enrolled in prior preparatory courses scoring higher, (b) education major (β = .285, p = .018) with education majors scoring higher, and (c) business major (β = .252, p = .032) with business majors scoring higher. One statistically significant predictor variable emerged for monolingual students, gender (β = -.085, p = .001) with females ranking higher. Age, income, race, ethnicity, U.S. origin, science or health science majors did not emerge as statistically significant predictor variables for either group. Similarities between monolingual and bilingual participants included statistically significant negative linear correlations between AMAS scores and course grades for both bilingual (r = -.178, p = .017) and monolingual participants (r = -.203, p = .001). Differences included a statistically significant linear correlation between AMAS scores and final exam grades for monolingual participants only (r = -.253, p < .0009) despite no statistically significant difference in the strength the linear relationship of the AMAS scores and the final exam scores between groups, z = 1.35, p = .1756. The findings show that bilingual and monolingual students report math anxiety similarly and that math anxiety has similar associations with performance measures, despite differences between predictor variables. One of the first studies on the math anxiety of bilingual community college students, the results suggest recommendations for researchers and practitioners.
Resumo:
The integration of mathematics and science in secondary schools in the 21st century continues to be an important topic of practice and research. The purpose of my research study, which builds on studies by Frykholm and Glasson (2005) and Berlin and White (2010), is to explore the potential constraints and benefits of integrating mathematics and science in Ontario secondary schools based on the perspectives of in-service and pre-service teachers with various math and/or science backgrounds. A qualitative and quantitative research design with an exploratory approach was used. The qualitative data was collected from a sample of 12 in-service teachers with various math and/or science backgrounds recruited from two school boards in Eastern Ontario. The quantitative and some qualitative data was collected from a sample of 81 pre-service teachers from the Queen’s University Bachelor of Education (B.Ed) program. Semi-structured interviews were conducted with the in-service teachers while a survey and a focus group was conducted with the pre-service teachers. Once the data was collected, the qualitative data were abductively analyzed. For the quantitative data, descriptive and inferential statistics (one-way ANOVAs and Pearson Chi Square analyses) were calculated to examine perspectives of teachers regardless of teaching background and to compare groups of teachers based on teaching background. The findings of this study suggest that in-service and pre-service teachers have a positive attitude towards the integration of math and science and view it as valuable to student learning and success. The pre-service teachers viewed the integration as easy and did not express concerns to this integration. On the other hand, the in-service teachers highlighted concerns and challenges such as resources, scheduling, and time constraints. My results illustrate when teachers perceive it is valuable to integrate math and science and which aspects of the classroom benefit best from the integration. Furthermore, the results highlight barriers and possible solutions to better the integration of math and science. In addition to the benefits and constraints of integration, my results illustrate why some teachers may opt out of integrating math and science and the different strategies teachers have incorporated to integrate math and science in their classroom.
Resumo:
This study examines how one secondary school teacher’s use of purposeful oral mathematics language impacted her students’ language use and overall communication in written solutions while working with word problems in a grade nine academic mathematics class. Mathematics is often described as a distinct language. As with all languages, students must develop a sense for oral language before developing social practices such as listening, respecting others ideas, and writing. Effective writing is often seen by students that have strong oral language skills. Classroom observations, teacher and student interviews, and collected student work served as evidence to demonstrate the nature of both the teacher’s and the students’ use of oral mathematical language in the classroom, as well as the effect the discourse and language use had on students’ individual written solutions while working on word problems. Inductive coding for themes revealed that the teacher’s purposeful use of oral mathematical language had a positive impact on students’ written solutions. The teacher’s development of a mathematical discourse community created a space for the students to explore mathematical language and concepts that facilitated a deeper level of conceptual understanding of the learned material. The teacher’s oral language appeared to transfer into students written work albeit not with the same complexity of use of the teacher’s oral expression of the mathematical register. Students that learn mathematical language and concepts better appear to have a growth mindset, feel they have ownership over their learning, use reorganizational strategies, and help develop a discourse community.
Resumo:
In 2015 the Irish Mathematics Learning Support Network (IMLSN) commissioned a comprehensive audit of the extent and nature of mathematics learning support (MLS) provision on the island of Ireland. An online survey was sent to 32 institutions, including universities, institutes of technology, further education and teacher training colleges, and a 97% response rate was achieved. While the headline figure – 84% of institutions that responded to the survey provide MLS – sounds good, deeper analysis reveals that the true state of MLS is not so solid. For example, in 25% of institutions offering MLS, only five hours per week (at most) of physical MLS are available, while in 20% of institutions the service is provided by only one or two staff members. Furthermore, training of tutors is minimal or non-existent in at least half of the institutions offering MLS. The results provide an illuminating picture, however, identifying the true state of MLS in Ireland is beneficial only if it informs developments in the years ahead. This talk will present some of the findings of the survey in more depth along with conclusions and recommendations. Key among these is the need for institutions to recognise MLS as a vital element of mathematics teaching and learning strategy at third level and devote the necessary resources to facilitate the provision of a service which can grow and adapt to meet student requirements.
Resumo:
A lightweight Java application suite has been developed and deployed allowing collaborative learning between students and tutors at remote locations. Students can engage in group activities online and also collaborate with tutors. A generic Java framework has been developed and applied to electronics, computing and mathematics education. The applications are respectively: (a) a digital circuit simulator, which allows students to collaborate in building simple or complex electronic circuits; (b) a Java programming environment where the paradigm is behavioural-based robotics, and (c) a differential equation solver useful in modelling of any complex and nonlinear dynamic system. Each student sees a common shared window on which may be added text or graphical objects and which can then be shared online. A built-in chat room supports collaborative dialogue. Students can work either in collaborative groups or else in teams as directed by the tutor. This paper summarises the technical architecture of the system as well as the pedagogical implications of the suite. A report of student evaluation is also presented distilled from use over a period of twelve months. We intend this suite to facilitate learning between groups at one or many institutions and to facilitate international collaboration. We also intend to use the suite as a tool to research the establishment and behaviour of collaborative learning groups. We shall make our software freely available to interested researchers.