991 resultados para matérias-primas para biodiesel
Resumo:
Considered the best substitute for diesel, biodiesel can be blended with diesel in any ratio, bringing lots of environmental, economic and social advantages. Brazilian law Nº 11097/2005, proposes the introduction of biodiesel in to the Brazilian energy matrix, mixed with diesel at a minimum percentage of 2%. For consumers and sellers to be sure that the commercialized mixture of biodiesel:diesel contains the correct percentage, it is necessary to develop analytical methodologies to quantify the amount of biodiesel added. This work presents a fast, low-cost and simple methodology to determine the biodiesel proportion in mixtures of biodiesel:diesel, based on infrared spectroscopy.
Resumo:
This paper describes the procedures for analysing pollutant gases emitted by engines, such as volatile organic compounds (benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene) by using high resolution gas chromatography (HRGC). For IC engine burning, in a broad sense, the use of the B10 mixture reduces drastically the emissions of aromatic compounds. Especially for benzene the reduction of concentrations occurs at the level of about 24.5%. Although a concentration value below 1 µg mL-1 has been obtained, this reduction is extremely significant since benzene is a carcinogenic compound.
Resumo:
The selective ion monitoring acquisition mode in mass spectrometry was applied to identify, in the diesel complex matrix, the raw materials (vegetable oil and alcohol) that originate biodiesel. Biodiesel samples obtained from babassu, castor, palm and soybean vegetable oils and pure fatty acid methyl and ethyl esters were used to develop this method, using specific fragments in mass spectrometry and the "window system" in gas chromatography. The commercial Brazilian B2 samples were found to be produced with soybean oil, transesterified with methanol.
Resumo:
Biodiesel can contain unsaturated fatty acids, which are susceptible to oxidation, being able to change into polymerized compounds. In this work biodiesel was characterized according to physical-chemistry parameters and the antioxidant activity of butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tert-butylhydroquinone (TBHQ) added to biofuel was analyzed. Biodiesel was submitted to accelerate oxidation in the Schaal oven test, and peroxide value was analyzed.The absorptivity values at 232 nm and 270 nm and oxidative stability in Rancimat®were determined. It was observed that TBHQ presented superior antioxidant activity than BHT and BHA.
Resumo:
Glycerol is a byproduct of biodiesel production through transesterification of oils and fat. This article discusses the chemical transformation of glycerol in ethers, acetals and esters of high technological applications, especially in the fuel sector. Glycerol hydrogenolysis, dehydration to acrolein and oxidation are discussed as well, to show the potential use of glycerol for production of plastic monomers. Finally, the article shows other transformations, such as syn gas production, epichloridrin and glycerin carbonate.
Resumo:
This article presents a bibliographic review of research carried out on different alternative processes for biodiesel production. The supercritical and subcritical (non catalytic) reaction conditions, the use of solid basic, solid acid and other heterogeneous catalysts, including the use of immobilized enzymes and whole-cell catalysts are also critically compared with the traditional homogeneous alkaline or acid catalysts that are common on industrial applications. Advantages and limitations of all these processes for the transference from the laboratory to the industry are discussed. A correlation of the chemical composition with the quality parameters of the produced biodiesel is done with aim to stablish adequate procedures for the right selection of the raw-material. Castor bean oil is used as an example of inappropriate oil in order to produce a B100 that fulfill all the international physico-chemical quality standards. In this article are presented research results to adequate the values of viscosity, density and iodine number of the castor and soybean biodiesel to the international standard limits by means blending these both biodiesels at the right ratio.
Resumo:
Contextualized overview of the Biodiesel Production Chain, from the lab bench to the industry, with critical evaluation of state-of-art and technological development through scientific articles and patents, focusing on feedstock, reaction/production, first and second generation processes, specification and quality, transport, storage, co-products (effluents and sub-products), and emissions. Challenges are identified and solutions are proposed based on the Brazilian feedstock, edaphoclimatic conditions, process monitoring in remote regions, state policy, and environment preservation, among others. Forecasts are made based on the technology assessment, identifying future trends and opportunities for R&D&I.
Resumo:
The establishment of quality standards for biodiesel was a key step to win the confidence of the market and the automotive industry, thus ensuring the success of the new fuel. In this review are presented standard methods and other analytical methods suggested for analysis of biodiesel. The methods of analysis were divided into groups according to information that may be provided on the contaminants from the raw material of the production process, the molecular structures of biodiesel and its degradation during storage.
Resumo:
Esterification reactions of glycerol with lauric acid in solvent free system were carried out using lipases from several sources. All lipases were immobilized on polysiloxane-polyvinyl alcohol particles by covalent binding with high activity recovered. Among the tested enzymes, the Candida antarctica lipase allowed to attain the highest molar conversion (76%), giving similar proportions of monolaurin, dilaurin and low amount of trilaurin. To further improve the process, the Response Surface Methodology (RSM) was used and optima temperature and molar ratio glycerol to lauric acid were found to be 45 ºC and 5:1, respectively. Under these conditions, 31.35% of monolaurin concentrations were attained and this result was in close agreement with the statistical model prediction.
Resumo:
A method for ester content determination in soybean methyl biodiesel was studied, using ethyl oleate as internal standard. A biodiesel sample was analyzed and had its purity estimated as 92.8%. Method accuracy was evaluated by comparison with the result obtained via EN14103, with a relative difference of 0.1%. Repetitivity and intermediate precision were estimated as 2 and 1.5%, respectively.
Resumo:
The objective of this work was to study the potentialities of Dipteryx lacunifera Ducke seeds oil for biodiesel production. The yield in oil was of 46.11 ± 0.37%. Methyl biodiesel was prepared by base catalyzed transesterification yielding 88.13% and percentage conversion of triglycerides to corresponding methyl ester of 89.1%. The addition of the tertiary butylhydroquinone (TBHQ, 50 ppm), butylated hydroxytoluene (BHT, 50 ppm) and cashew nut shell liquid (CNSL, 2000 ppm) antioxidants in the biodiesel contributed to the increase of the induction period of 2.97 h for 8.08; 6.06 and 6.02 h, respectively.
Resumo:
Antioxidants are an alternative to prevent or slow the degradation of the biofuel. In this study, it was evaluated the oxidative stability of B100 biodiesel from soybean oil in the presence of three commercial synthetic antioxidants, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tert-butylhydroquinone (TBHQ), pure or blended, from the experimental design of simplex-centroid mixture. The reaction order and rate constant were also calculated for all tests. The treatment containing pure TBHQ proved to be the most effective, proven by design, the optimum mix obtained and the rate constant. Binary and ternary mixtures containing TBHQ also showed appreciable antioxidant effect.
Resumo:
The objective of this work is to show the results of the in situ transesterification of sunflower seed oil with methanol on basic homogeneous and heterogeneous catalysis for the production of biodiesel. In homogeneous catalysis, the activity of KOH and K2CO3 were evaluated using the same oil:methanol ratio of 1:90. KOH showed to be more active than K2CO3, leading to total conversion in biodiesel after 1h reaction time. In the heterogeneous catalysis the activity of K2CO3/Al2O3 was comparable to the activity of K2CO3 bulk: 53.0 and 66.6% resp. The properties of samples of biodiesel produced by homogeneous and heterogeneous catalysis were evaluated and are in accordance with the recommended fuel properties.
Resumo:
This work describes the results of the purification of methyl biodiesel, obtained by oxidized soybean oil, using different methods. After the ester separation from the glycerin by decanting, the ester was purified each time with distillation, washing with water and adsorption with bauxite, bentonite and attapulgite. The removal of total contamination, unsaponifiable material, concentrations of free glycerin and soap were analyzed in the purified ester phase. The best result of purification was observed with the use of bentonite and bauxite, in the removal of soap and free glycerin respectively.
Resumo:
Arkit: 1 arkintunnukseton lehti, A-C4 D2.