948 resultados para magnetoresistive sensors
Resumo:
The calibration results of one anemometer equipped with several rotors, varying their size, were analyzed. In each case, the 30-pulses pert turn output signal of the anemometer was studied using Fourier series decomposition and correlated with the anemometer factor (i.e., the anemometer transfer function). Also, a 3-cup analytical model was correlated to the data resulting from the wind tunnel measurements. Results indicate good correlation between the post-processed output signal and the working condition of the cup anemometer. This correlation was also reflected in the results from the proposed analytical model. With the present work the possibility of remotely checking cup anemometer status, indicating the presence of anomalies and, therefore, a decrease on the wind sensor reliability is revealed.
Resumo:
A study which examines the use of aircraft as wind sensors in a terminal area for real-time wind estimation in order to improve aircraft trajectory prediction is presented in this paper. We describe not only different sources in the aircraft systems that provide the variables needed to derivate the wind velocity but the capabilities which allow us to present this information for ATM Applications. Based on wind speed samples from aircraft landing at Madrid-Barajas airport, a real-time wind field will be estimated using a data processing approach through a minimum variance method. Finally the accuracy of this procedure will be evaluated for this information to be useful to Air Traffic Control.
Resumo:
The application of the Electro-Mechanical Impedance (EMI) method for damage detection in Structural Health Monitoring has noticeable increased in recent years. EMI method utilizes piezoelectric transducers for directly measuring the mechanical properties of the host structure, obtaining the so called impedance measurement, highly influenced by the variations of dynamic parameters of the structure. These measurements usually contain a large number of frequency points, as well as a high number of dimensions, since each frequency range swept can be considered as an independent variable. That makes this kind of data hard to handle, increasing the computational costs and being substantially time-consuming. In that sense, the Principal Component Analysis (PCA)-based data compression has been employed in this work, in order to enhance the analysis capability of the raw data. Furthermore, a Support Vector Machine (SVM), which has been widespread used in machine learning and pattern recognition fields, has been applied in this study in order to model any possible existing pattern in the PCAcompress data, using for that just the first two Principal Components. Different known non-damaged and damaged measurements of an experimental tested beam were used as training input data for the SVM algorithm, using as test input data the same amount of cases measured in beams with unknown structural health conditions. Thus, the purpose of this work is to demonstrate how, with a few impedance measurements of a beam as raw data, its healthy status can be determined based on pattern recognition procedures.
Resumo:
Advanced composite materials are increasingly used in the strengthening of reinforced concrete (RC) structures. The use of externally bonded strips made of fibre-reinforced plastics (FRP) as strengthening method has gained widespread acceptance in recent years since it has many advantages over the traditional techniques. However, unfortunately, this strengthening method is often associated with a brittle and sudden failure caused by some form of FRP bond failure, originated at the termination of the FRP material or at intermediate areas in the vicinity of flexural cracks in the RC beam. Up to date, little effort in the early prediction of the debonding in its initial instants even though this effect is not noticeable by simple visual observation. An early detection of this phenomenon might help in taking actions to prevent future catastrophes. Fibre-optic Bragg grating (FBG) sensors are able to measure strains locally with high resolution and accuracy. Furthermore, as their physical size is extremely small compared with other strain measuring components, it enables to be embedded at the concrete-FRP interface for determining the strain distribution without influencing the mechanical properties of the host materials. This paper shows the development of a debonding identification methodology based on strains experimentally measured. For, it a simplified model is implemented to simulate the behaviour of FRP-strengthened reinforced concrete beams. This model is taken as a basis to. develop an model updating procedure able to detect minor debonding at the concrete-FRP interface from experimental strains obtained by using FBG sensors embedded at the interface
Resumo:
Adjusting N fertilizer application to crop requirements is a key issue to improve fertilizer efficiency, reducing unnecessary input costs to farmers and N environmental impact. Among the multiple soil and crop tests developed, optical sensors that detect crop N nutritional status may have a large potential to adjust N fertilizer recommendation (Samborski et al. 2009). Optical readings are rapid to take and non-destructive, they can be efficiently processed and combined to obtain indexes or indicators of crop status. However, other physiological stress conditions may interfere with the readings and detection of the best crop nutritional status indicators is not always and easy task. Comparison of different equipments and technologies might help to identify strengths and weakness of the application of optical sensors for N fertilizer recommendation. The aim of this study was to evaluate the potential of various ground-level optical sensors and narrow-band indices obtained from airborne hyperspectral images as tools for maize N fertilizer recommendations. Specific objectives were i) to determine which indices could detect differences in maize plants treated with different N fertilizer rates, and ii) to evaluate its ability to identify N-responsive from non-responsive sites.
Resumo:
The fermentation stage is considered to be one of the critical steps in coffee processing due to its impact on the final quality of the product. The objective of this work is to characterise the temperature gradients in a fermentation tank by multi-distributed, low-cost and autonomous wireless sensors (23 semi-passive TurboTag® radio-frequency identifier (RFID) temperature loggers). Spatial interpolation in polar coordinates and an innovative methodology based on phase space diagrams are used. A real coffee fermentation process was supervised in the Cauca region (Colombia) with sensors submerged directly in the fermenting mass, leading to a 4.6 °C temperature range within the fermentation process. Spatial interpolation shows a maximum instant radial temperature gradient of 0.1 °C/cm from the centre to the perimeter of the tank and a vertical temperature gradient of 0.25 °C/cm for sensors with equal polar coordinates. The combination of spatial interpolation and phase space graphs consistently enables the identification of five local behaviours during fermentation (hot and cold spots).
Resumo:
An innovative background modeling technique that is able to accurately segment foreground regions in RGB-D imagery (RGB plus depth) has been presented in this paper. The technique is based on a Bayesian framework that efficiently fuses different sources of information to segment the foreground. In particular, the final segmentation is obtained by considering a prediction of the foreground regions, carried out by a novel Bayesian Network with a depth-based dynamic model, and, by considering two independent depth and color-based mixture of Gaussians background models. The efficient Bayesian combination of all these data reduces the noise and uncertainties introduced by the color and depth features and the corresponding models. As a result, more compact segmentations, and refined foreground object silhouettes are obtained. Experimental results with different databases suggest that the proposed technique outperforms existing state-of-the-art algorithms.
Resumo:
Esta Tesis tiene como objetivo principal el desarrollo de métodos de identificación del daño que sean robustos y fiables, enfocados a sistemas estructurales experimentales, fundamentalmente a las estructuras de hormigón armado reforzadas externamente con bandas fibras de polímeros reforzados (FRP). El modo de fallo de este tipo de sistema estructural es crítico, pues generalmente es debido a un despegue repentino y frágil de la banda del refuerzo FRP originado en grietas intermedias causadas por la flexión. La detección de este despegue en su fase inicial es fundamental para prevenir fallos futuros, que pueden ser catastróficos. Inicialmente, se lleva a cabo una revisión del método de la Impedancia Electro-Mecánica (EMI), de cara a exponer sus capacidades para la detección de daño. Una vez la tecnología apropiada es seleccionada, lo que incluye un analizador de impedancias así como novedosos sensores PZT para monitorización inteligente, se ha diseñado un procedimiento automático basado en los registros de impedancias de distintas estructuras de laboratorio. Basándonos en el hecho de que las mediciones de impedancias son posibles gracias a una colocación adecuada de una red de sensores PZT, la estimación de la presencia de daño se realiza analizando los resultados de distintos indicadores de daño obtenidos de la literatura. Para que este proceso sea automático y que no sean necesarios conocimientos previos sobre el método EMI para realizar un experimento, se ha diseñado e implementado un Interfaz Gráfico de Usuario, transformando la medición de impedancias en un proceso fácil e intuitivo. Se evalúa entonces el daño a través de los correspondientes índices de daño, intentando estimar no sólo su severidad, sino también su localización aproximada. El desarrollo de estos experimentos en cualquier estructura genera grandes cantidades de datos que han de ser procesados, y algunas veces los índices de daño no son suficientes para una evaluación completa de la integridad de una estructura. En la mayoría de los casos se pueden encontrar patrones de daño en los datos, pero no se tiene información a priori del estado de la estructura. En este punto, se ha hecho una importante investigación en técnicas de reconocimiento de patrones particularmente en aprendizaje no supervisado, encontrando aplicaciones interesantes en el campo de la medicina. De ahí surge una idea creativa e innovadora: detectar y seguir la evolución del daño en distintas estructuras como si se tratase de un cáncer propagándose por el cuerpo humano. En ese sentido, las lecturas de impedancias se emplean como información intrínseca de la salud de la propia estructura, de forma que se pueden aplicar las mismas técnicas que las empleadas en la investigación del cáncer. En este caso, se ha aplicado un algoritmo de clasificación jerárquica dado que ilustra además la clasificación de los datos de forma gráfica, incluyendo información cualitativa y cuantitativa sobre el daño. Se ha investigado la efectividad de este procedimiento a través de tres estructuras de laboratorio, como son una viga de aluminio, una unión atornillada de aluminio y un bloque de hormigón reforzado con FRP. La primera ayuda a mostrar la efectividad del método en sencillos escenarios de daño simple y múltiple, de forma que las conclusiones extraídas se aplican sobre los otros dos, diseñados para simular condiciones de despegue en distintas estructuras. Demostrada la efectividad del método de clasificación jerárquica de lecturas de impedancias, se aplica el procedimiento sobre las estructuras de hormigón armado reforzadas con bandas de FRP objeto de esta tesis, detectando y clasificando cada estado de daño. Finalmente, y como alternativa al anterior procedimiento, se propone un método para la monitorización continua de la interfase FRP-Hormigón, a través de una red de sensores FBG permanentemente instalados en dicha interfase. De esta forma, se obtienen medidas de deformación de la interfase en condiciones de carga continua, para ser implementadas en un modelo de optimización multiobjetivo, cuya solución se haya por medio de una expansión multiobjetivo del método Particle Swarm Optimization (PSO). La fiabilidad de este último método de detección se investiga a través de sendos ejemplos tanto numéricos como experimentales. ABSTRACT This thesis aims to develop robust and reliable damage identification methods focused on experimental structural systems, in particular Reinforced Concrete (RC) structures externally strengthened with Fiber Reinforced Polymers (FRP) strips. The failure mode of this type of structural system is critical, since it is usually due to sudden and brittle debonding of the FRP reinforcement originating from intermediate flexural cracks. Detection of the debonding in its initial stage is essential thus to prevent future failure, which might be catastrophic. Initially, a revision of the Electro-Mechanical Impedance (EMI) method is carried out, in order to expose its capabilities for local damage detection. Once the appropriate technology is selected, which includes impedance analyzer as well as novel PZT sensors for smart monitoring, an automated procedure has been design based on the impedance signatures of several lab-scale structures. On the basis that capturing impedance measurements is possible thanks to an adequately deployed PZT sensor network, the estimation of damage presence is done by analyzing the results of different damage indices obtained from the literature. In order to make this process automatic so that it is not necessary a priori knowledge of the EMI method to carry out an experimental test, a Graphical User Interface has been designed, turning the impedance measurements into an easy and intuitive procedure. Damage is then assessed through the analysis of the corresponding damage indices, trying to estimate not only the damage severity, but also its approximate location. The development of these tests on any kind of structure generates large amounts of data to be processed, and sometimes the information provided by damage indices is not enough to achieve a complete analysis of the structural health condition. In most of the cases, some damage patterns can be found in the data, but none a priori knowledge of the health condition is given for any structure. At this point, an important research on pattern recognition techniques has been carried out, particularly on unsupervised learning techniques, finding interesting applications in the medicine field. From this investigation, a creative and innovative idea arose: to detect and track the evolution of damage in different structures, as if it were a cancer propagating through a human body. In that sense, the impedance signatures are used to give intrinsic information of the health condition of the structure, so that the same clustering algorithms applied in the cancer research can be applied to the problem addressed in this dissertation. Hierarchical clustering is then applied since it also provides a graphical display of the clustered data, including quantitative and qualitative information about damage. The performance of this approach is firstly investigated using three lab-scale structures, such as a simple aluminium beam, a bolt-jointed aluminium beam and an FRP-strengthened concrete specimen. The first one shows the performance of the method on simple single and multiple damage scenarios, so that the first conclusions can be extracted and applied to the other two experimental tests, which are designed to simulate a debonding condition on different structures. Once the performance of the impedance-based hierarchical clustering method is proven to be successful, it is then applied to the structural system studied in this dissertation, the RC structures externally strengthened with FRP strips, where the debonding failure in the interface between the FRP and the concrete is successfully detected and classified, proving thus the feasibility of this method. Finally, as an alternative to the previous approach, a continuous monitoring procedure of the FRP-Concrete interface is proposed, based on an FBGsensors Network permanently deployed within that interface. In this way, strain measurements can be obtained under controlled loading conditions, and then they are used in order to implement a multi-objective model updating method solved by a multi-objective expansion of the Particle Swarm Optimization (PSO) method. The feasibility of this last proposal is investigated and successfully proven on both numerical and experimental RC beams strengthened with FRP.
Resumo:
The solutions to cope with new challenges that societies have to face nowadays involve providing smarter daily systems. To achieve this, technology has to evolve and leverage physical systems automatic interactions, with less human intervention. Technological paradigms like Internet of Things (IoT) and Cyber-Physical Systems (CPS) are providing reference models, architectures, approaches and tools that are to support cross-domain solutions. Thus, CPS based solutions will be applied in different application domains like e-Health, Smart Grid, Smart Transportation and so on, to assure the expected response from a complex system that relies on the smooth interaction and cooperation of diverse networked physical systems. The Wireless Sensors Networks (WSN) are a well-known wireless technology that are part of large CPS. The WSN aims at monitoring a physical system, object, (e.g., the environmental condition of a cargo container), and relaying data to the targeted processing element. The WSN communication reliability, as well as a restrained energy consumption, are expected features in a WSN. This paper shows the results obtained in a real WSN deployment, based on SunSPOT nodes, which carries out a fuzzy based control strategy to improve energy consumption while keeping communication reliability and computational resources usage among boundaries.
Resumo:
The study of the temperature gradients in cold stores and containers is a critical issue in the food industry for the quality assurance of products during transport and for minimising losses. This work presents an analysis of the temperatures during the refrigerated transport of 4,320 kg of blueberries in a reefer (set point temperature at ?1ºC) on a container ship from Montevideo (Uruguay) to Verona (Italy). The monitoring was performed by using semi-passive RFID loggers (TurboTag cards). The objective was to carry out a multi-distributed supervision using low-cost, wireless and autonomous sensors for the characterisation of the distribution and spatial gradients of temperatures during a long distance transport. Data analysis shows spatial (phase space) and temporal sequencing diagrams and reveals a significant heterogeneity of temperature at different locations in the container, which highlights the ineffectiveness of a temperature control system based on a single sensor, as is usually done.
Resumo:
Los sistemas micro electro mecánicos (MEMS) han demostrado ser una exitosa familia de dispositivos que pueden usarse como plataforma para el desarrollo de dispositivos con aplicaciones en óptica, comunicaciones, procesado de señal y sensorización. Los dispositivos MEMS estándar suelen estar fabricados usando tecnología de silicio. Sin embargo, el rendimiento de estos MEMS se puede mejorar si se usan otros materiales. Por ejemplo, el diamante nanocristalino (NCD) ofrece unas excelentes propiedades mecánicas, transparencia y una superficie fácil de funcionalizar. Por otro lado, el sistema de materiales (In; Ga; Al)N, los materiales IIIN, se pueden usar para producir estructuras monocristalinas con alta sensibilidad mecánica y química. Además, el AlN se puede depositar por pulverización catódica reactiva sobre varios substratos, incluyendo NCD, para formar capas policristalinas orientadas con alta respuesta piezoeléctrica. Adicionalmente, tanto el NCD como los materiales III-N muestran una gran estabilidad térmica y química, lo que los hace una elección idónea para desarrollar dispositivos para aplicaciones para alta temperatura, ambientes agresivos e incluso para aplicaciones biocompatibles. En esta tesis se han usado estos materiales para el diseño y medición de demostradores tecnológicos. Se han perseguido tres objetivos principales: _ Desarrollo de unos procesos de fabricación apropiados. _ Medición de las propiedades mecánicas de los materiales y de los factores que limitan el rendimiento de los dispositivos. _ Usar los datos medidos para desarrollar dispositivos demostradores complejos. En la primera parte de esta tesis se han estudiado varias técnicas de fabricación. La estabilidad de estos materiales impide el ataque y dificulta la producción de estructuras suspendidas. Los primeros capítulos de esta disertación se dedican al desarrollo de unos procesos de transferencia de patrones por ataque seco y a la optimización del ataque húmedo sacrificial de varios substratos propuestos. Los resultados de los procedimientos de ataque se presentan y se describe la optimización de las técnicas para la fabricación de estructuras suspendidas de NCD y materiales III-N. En un capítulo posterior se estudia el crecimiento de AlN por pulverización catódica. Como se ha calculado en esta disertación para obtener una actuación eficiente de MEMS, las capas de AlN han de ser finas, típicamente d < 200 nm, lo que supone serias dificultades para la obtención de capas orientadas con respuesta piezoeléctrica. Las condiciones de depósito se han mapeado para identificar las fronteras que proporcionan el crecimiento de material orientado desde los primeros pasos del proceso. Además, durante la optimización de los procesos de ataque se estudió un procedimiento para fabricar películas de GaN nanoporoso. Estas capas porosas pueden servir como capas sacrificiales para la fabricación de estructuras suspendidas de GaN con baja tensión residual o como capas para mejorar la funcionalización superficial de sensores químicos o biológicos. El proceso de inducción de poros se discutirá y también se presentarán experimentos de ataque y funcionalización. En segundo lugar, se han determinado las propiedades mecánicas del NCD y de los materiales III-N. Se han fabricado varias estructuras suspendidas para la medición del módulo de Young y de la tensión residual. Además, las estructuras de NCD se midieron en resonancia para calcular el rendimiento de los dispositivos en términos de frecuencia y factor de calidad. Se identificaron los factores intrínsecos y extrínsecos que limitan ambas figuras de mérito y se han desarrollado modelos para considerar estas imperfecciones en las etapas de diseño de los dispositivos. Por otra parte, los materiales III-N normalmente presentan grandes gradientes de deformación residual que causan la deformación de las estructuras al ser liberadas. Se han medido y modelado estos efectos para los tres materiales binarios del sistema para proporcionar puntos de interpolación que permitan predecir las características de las aleaciones del sistema III-N. Por último, los datos recabados se han usado para desarrollar modelos analíticos y numéricos para el diseño de varios dispositivos. Se han estudiado las propiedades de transducción y se proporcionan topologías optimizadas. En el último capítulo de esta disertación se presentan diseños optimizados de los siguientes dispositivos: _ Traviesas y voladizos de AlN=NCD con actuación piezoeléctrica aplicados a nanoconmutadores de RF para señales de alta potencia. _ Membranas circulares de AlN=NCD con actuación piezoeléctrica aplicadas a lentes sintonizables. _ Filtros ópticos Fabry-Pérot basados en cavidades aéreas y membranas de GaN actuadas electrostáticamente. En resumen, se han desarrollado unos nuevos procedimientos optimizados para la fabricación de estructuras de NCD y materiales III-N. Estas técnicas se han usado para producir estructuras que llevaron a la determinación de las principales propiedades mecánicas y de los parámetros de los dispositivos necesarios para el diseño de MEMS. Finalmente, los datos obtenidos se han usado para el diseño optimizado de varios dispositivos demostradores. ABSTRACT Micro Electro Mechanical Systems (MEMS) have proven to be a successful family of devices that can be used as a platform for the development of devices with applications in optics, communications, signal processing and sensorics. Standard MEMS devices are usually fabricated using silicon based materials. However, the performance of these MEMS can be improved if other material systems are used. For instance, nanocrystalline diamond (NCD) offers excellent mechanical properties, optical transparency and ease of surface functionalization. On the other hand, the (In; Ga; Al)N material system, the III-N materials, can be used to produce single crystal structures with high mechanical and chemical sensitivity. Also, AlN can be deposited by reactive sputtering on various substrates, including NCD, to form oriented polycrystalline layers with high piezoelectric response. In addition, both NCD and III-N materials exhibit high thermal and chemical stability, which makes these material the perfect choice for the development of devices for high temperatures, harsh environments and even biocompatible applications. In this thesis these materials have been used for the design and measurement of technological demonstrators. Three main objectives have been pursued: _ Development of suitable fabrication processes. _ Measurement of the material mechanical properties and device performance limiting factors. _ Use the gathered data to design complex demonstrator devices. In a first part of the thesis several fabrication processes have been addressed. The stability of these materials hinders the etching of the layers and hampers the production of free standing structures. The first chapters of this dissertation are devoted to the development of a dry patterning etching process and to sacrificial etching optimization of several proposed substrates. The results of the etching processes are presented and the optimization of the technique for the manufacturing of NCD and III-N free standing structures is described. In a later chapter, sputtering growth of thin AlN layers is studied. As calculated in this dissertation, for efficient MEMS piezoelectric actuation the AlN layers have to be very thin, typically d < 200 nm, which poses serious difficulties to the production of c-axis oriented material with piezoelectric response. The deposition conditions have been mapped in order to identify the boundaries that give rise to the growth of c-axis oriented material from the first deposition stages. Additionally, during the etching optimization a procedure for fabricating nanoporous GaN layers was also studied. Such porous layers can serve as a sacrificial layer for the release of low stressed GaN devices or as a functionalization enhancement layer for chemical and biological sensors. The pore induction process will be discussed and etching and functionalization trials are presented. Secondly, the mechanical properties of NCD and III-N materials have been determined. Several free standing structures were fabricated for the measurement of the material Young’s modulus and residual stress. In addition, NCD structures were measured under resonance in order to calculate the device performance in terms of frequency and quality factor. Intrinsic and extrinsic limiting factors for both figures were identified and models have been developed in order to take into account these imperfections in the device design stages. On the other hand, III-N materials usually present large strain gradients that lead to device deformation after release. These effects have been measured and modeled for the three binary materials of the system in order to provide the interpolation points for predicting the behavior of the III-N alloys. Finally, the gathered data has been used for developing analytic and numeric models for the design of various devices. The transduction properties are studied and optimized topologies are provided. Optimized design of the following devices is presented at the last chapter of this dissertation: _ AlN=NCD piezoelectrically actuated beams applied to RF nanoswitches for large power signals. _ AlN=NCD piezoelectrically actuated circular membranes applied to tunable lenses. _ GaN based air gap tunable optical Fabry-Pérot filters with electrostatic actuation. On the whole, new optimized fabrication processes has been developed for the fabrication of NCD and III-N MEMS structures. These processing techniques was used to produce structures that led to the determination of the main mechanical properties and device parameters needed for MEMS design. Lastly, the gathered data was used for the design of various optimized demonstrator devices.
Resumo:
In this work is addressed the topic of estimation of velocity and acceleration from digital position data. It is presented a review of several classic methods and implemented with real position data from a low cost digital sensor of a hydraulic linear actuator. The results are analyzed and compared. It is shown that static methods have a limited bandwidth application, and that the performance of some methods may be enhanced by adapting its parameters according to the current state.
Resumo:
The emergence of new horizons in the field of travel assistant management leads to the development of cutting-edge systems focused on improving the existing ones. Moreover, new opportunities are being also presented since systems trend to be more reliable and autonomous. In this paper, a self-learning embedded system for object identification based on adaptive-cooperative dynamic approaches is presented for intelligent sensor’s infrastructures. The proposed system is able to detect and identify moving objects using a dynamic decision tree. Consequently, it combines machine learning algorithms and cooperative strategies in order to make the system more adaptive to changing environments. Therefore, the proposed system may be very useful for many applications like shadow tolls since several types of vehicles may be distinguished, parking optimization systems, improved traffic conditions systems, etc.
Resumo:
The fluorescence of a polyanionic conjugated polymer can be quenched by extremely low concentrations of cationic electron acceptors in aqueous solutions. We report a greater than million-fold amplification of the sensitivity to fluorescence quenching compared with corresponding “molecular excited states.” Using a combination of steady-state and ultrafast spectroscopy, we have established that the dramatic quenching results from weak complex formation [polymer(−)/quencher(+)], followed by ultrafast electron transfer from excitations on the entire polymer chain to the quencher, with a time constant of 650 fs. Because of the weak complex formation, the quenching can be selectively reversed by using a quencher-recognition diad. We have constructed such a diad and demonstrate that the fluorescence is fully recovered on binding between the recognition site and a specific analyte protein. In both solutions and thin films, this reversible fluorescence quenching provides the basis for a new class of highly sensitive biological and chemical sensors.
Resumo:
The synthesis of novel fluorogenic retro-aldol substrates for aldolase antibody 38C2 is described. These substrates are efficiently and specifically processed by antibody aldolases but not by natural cellular enzymes. Together, the fluorogenic substrates and antibody aldolases provide reporter gene systems that are compatible with living cells. The broad scope of the antibody aldolase allows for the processing of a range of substrates that can be designed to allow fluorescence monitoring at a variety of wavelengths. We also have developed the following concept in fluorescent protein tags. β-Diketones bearing a fluorescent tag are bound covalently by the aldolase antibody and not other proteins. We anticipate that proteins fused with the antibody can be tagged specifically and covalently within living cells with fluorophores of virtually any color, thereby providing an alternative to green fluorescent protein fusions.