844 resultados para magnesium carbonate
Resumo:
Zinc oxide can be obtained by thermal decomposition of hydrozincite, a topochemical reaction. This work reports the relation between zinc oxide morphology and the precursor zinc hydroxide carbonate precipitation time. The morphological evolution was monitored by SEM, IR and XRD. Zinc oxide obtained from initially precipitated hydrozincite consists of porous spherical aggregates and shows a single Zn-O IR vibrational band. At longer periods of precipitation time the aggregates were transformed into spherulitic-shaped zinc oxide particles showing the Zn-O split vibrational band. X-ray patterns show that the hexagonal zinc oxide phase is substantially increased as a function of hydrozincite precipitation time. © 1997 Elsevier Science S.A.
Resumo:
The cation substitutions in the crystal lattice of binary potassium-holmium vanadate (V) K3Ho(VO4)2 by magnesium have been studied using various types of chemical solid state reactions. It was shown that in the presence of the quasi-ternary system K3VO4-Mg3(VO4)2-HoVO 4 at 700°C there a compound defined as K3Ho(VO4)2 with a narrow homogeneity range where K and Ho are partially substituted by Mg in accordance with various schemes. © 1998 Published by Elsevier Science S.A.
Resumo:
Magnesium chloride (MgCl2) has been proposed for the treatment of seizures of different etiologies. The present study investigated the effect of MgCl2 on aldrin-induced seizures. Initially, 50 male rats received 60 mg aldrin/kg po and the effects were classified as muscular twitches, clonic convulsions or tonic-clonic convulsions. Another group of 40 rats dosed with 60 mg aldrin/kg po received 0, 4, 8, or 12 mg MgCl2/kg im. The percentage of tonic-clonic convulsant rats that resulted from MgCl2 treatment were 90% at 0 mg/kg; 50% at 4 mg/kg, 40% at 8 mg/kg and 20% at 12 mg MgCl2/kg. The percentage of survivors in the group receiving 12 mg MgCl2/kg was 80% while the control group had 20% survival. The clonic convulsions were not modified by MgCl2 treatment. Blood and brain concentrations of aldrin and dieldrin (metabolite of aldrin) did not differ among groups. The MgCl2 administration decreased the neuroexcitability induced by aldrin and increased survivability.
Resumo:
The effect of magnesium addition on the phase formation, microstructure and electric and ferroelectric properties of LiNbO 3 thin films prepared through polymeric precursors was analyzed. By X ray diffraction no secondary phase was observed with the increase of magnesium concentration. Comparing to pure LiNbO 3, the addition of 0.5 and 1.0 mol% of Mg +2 increased of the dielectric constant, while 2.0 mol% decreased it. It was noticed that the increase in additive concentration decreases the ferroelectric remanent polarization and increases the coercive field. © 2002 Taylor & Francis.
Resumo:
A method is described for the simultaneous determination of Cd, Cr, Ni and Pb in mineral water samples by graphite furnace atomic absorption spectrometry with a transversely heated graphite atomizer (THGA) and a longitudinal Zeeman-effect background correction system. The electrothermal behavior of analytes during pyrolysis and atomization steps was studied without modifier, in presence of 5 μg Pd and 3 μg Mg(NO3)2 and in presence of 50 μg NH4H2PO4 and 3 μg Mg(NO3)2. A volume of 20 μL of a 0.028 mol L -1 HNO3 solution containing 50 μg L-1 Ni and Pb, 10 μg L-1 Cr and 5 μg L-1 Cd was dispensed into the graphite tube at 20°C. The mixture palladium/magnesium was selected as the optimum modifier. The pyrolysis and atomization temperatures were fixed at 1000°C and 2300°C, respectively. The characteristic masses were calculated as 2.2 pg Cd, 10 pg Cr, 42 pg Ni and 66 pg Pb and the lifetime of the graphite tube was around 600 firings. Limits of detection based on integrated absorbance were 0.02 μg L-1Cd, 0.94 μg L-1 Cr, 0.45 μg L-1 Ni and 0.75 μg L-1 Pb, which exceeded the requirements of Brazilian Food Regulation that establish the maximum permissible level for Cd, Cr, Ni and Pb at 3 μg L-1, 50 μg L-1, 20 μg L-1 and 10 μg L-1, respectively. The recoveries of Cd, Cr, Ni and Pb added to mineral water samples varied within the 93-108%, 96-104%, 87-101% and 98-108% ranges, respectively. Results of analysis of standard reference materials (National Institute of Standards and Technology: 1640-Trace Elements in Natural Water; 1643d-Trace Elements in Water) were in agreement with certified values at the 95% confidence level.
Resumo:
Fuel cell as MCFC (molten carbonate fuel cell) operate at high temperatures, and due to this issue, cogeneration processes may be performed, sending heat for own process or other purposes as steam generation in an industry. The use of ethanol for this purpose is one of the best options because this is a renewable and less environmentally offensive fuel, and cheaper than oil-derived hydrocarbons (in the case of Brazil). In the same country, because of technical, environmental and economic advantages, the use of ethanol by steam reforming process have been the most investigated process. The objective of this study is to show a thermodynamic analysis of steam reforming of ethanol, to determine the best thermodynamic conditions where are produced the highest volumes of products, making possible a higher production of energy, that is, a most-efficient use of resources. To attain this objective, mass and energy balances are performed. Equilibrium constants and advance degrees are calculated to get the best thermodynamic conditions to attain higher reforming efficiency and, hence, higher electric efficiency, using the Nernst equation. The advance degree of reforming increases when the operation temperature also increases and when the operation pressure decreases. But at atmospheric pressure (1 atm), the advance degree tends to the stability in temperatures above 700°C, that is, the volume of supplemental production of reforming products is very small for the high use of energy resources necessary. Reactants and products of the steam-reforming of ethanol that weren't used may be used for the reforming. The use of non-used ethanol is also suggested for heating of reactants before reforming. The results show the behavior of MCFC. The current density, at same tension, is higher at 700°C than other studied temperatures as 600 and 650°C. This fact occurs due to smaller use of hydrogen at lower temperatures that varies between 46.8 and 58.9% in temperatures between 600 and 700°C. The higher calculated current density is 280 mA/cm 2. The power density increases when the volume of ethanol to be used also increases due to higher production of hydrogen. The highest produced power at 190 mW/cm 2 is 99.8, 109.8 and 113.7 mW/cm2 for 873, 923 and 973K, respectively. The thermodynamic efficiency has the objective to show the connection among operational conditions and energetic factors, which are some parameters that describes a process of internal steam reforming of ethanol.
Resumo:
Propolis is a natural product collected by honeybees and has a large range of pharmacological activity, including antimicrobial, antitumoral, antioxidant and anti-inflammatory. Its use as a popular medicine is increasing all over the world, creating a need for quality control of the commercial products. In this study the levels of calcium and magnesium in commercial hydroalcoholic propolis extracts from varies states of Brazil were determined by atomic absorption flame spectrophotometry and different values were obtained for northern and southern states. This study can be extended to the analysis of metals that are harmful to health. The results showed that the calibration curves were linear over a wide concentration range (0.5-4.0 μg.mL -1 for calcium and 0.05-0.4 μg.mL -1 for magnesium) with good correlation coefficients (0.999 and 0.988, respectively). Good analytical recovery (94%) was obtained. The proposed method showed adequate precision and relative standard deviation lower than 2 %. The method is accurate and precise as well as having advantages such as simplicity and speed.
Resumo:
Magnesium (Mg2+) deficiency is a frequently occurring disorder that leads to loss of bone mass, abnormal bone growth and skeletal weakness. It is not clear whether Mg2+ deficiency affects the formation and/or activity of osteoclasts. We evaluated the effect of Mg2+ restriction on these parameters. Bone marrow cells from long bone and jaw of mice were seeded on plastic and on bone in medium containing different concentrations of Mg2+ (0.8 mM which is 100% of the normal value, 0.4, 0.08 and 0 mM). The effect of Mg2+ deficiency was evaluated on osteoclast precursors for their viability after 3 days and proliferation rate after 3 and 6 days, as was mRNA expression of osteoclastogenesis-related genes and Mg2+-related genes. After 6 days of incubation, the number of tartrate resistant acid phosphatase-positive (TRACP+) multinucleated cells was determined, and the TRACP activity of the medium was measured. Osteoclastic activity was assessed at 8 days by resorption pit analysis. Mg2+ deficiency resulted in increased numbers of osteoclast-like cells, a phenomenon found for both types of marrow. Mg2+ deficiency had no effect on cell viability and proliferation. Increased osteoclastogenesis due to Mg2+ deficiency was reflected in higher expression of osteoclast-related genes. However, resorption per osteoclast and TRACP activity were lower in the absence of Mg2+. In conclusion, Mg2+ deficiency augmented osteoclastogenesis but appeared to inhibit the activity of these cells. Together, our in vitro data suggest that altered osteoclast numbers and activity may contribute to the skeletal phenotype as seen in Mg2+ deficient patients. © 2012 Elsevier Inc. All rights reserved.
Resumo:
BACKGROUND There is little information on the interaction between magnesium sulphate (MgSO4) and rocuronium in elderly patients. With a growing number of older patients who need surgical procedures, it is increasingly important to study this age group. OBJECTIVE To evaluate the effects of MgSO4 administration on the pharmacodynamics of rocuronium in patients aged 60 years or older. DESIGN A randomised controlled trial. SETTING A tertiary care hospital. PATIENTS Sixty-four patients, aged 60 years or older, American Society of Anesthesiologists (ASA) physical status classes I to III, scheduled for elective oncological head and neck surgery. Exclusion criteria were severe renal insufficiency (calculated creatinine clearance <30 ml min-1), preoperatorive serum magnesium concentration of more than 1.25 mmol l1 and patients receiving drugs known to affect neuromuscular function. INTERVENTIONS Patients were randomly allocated to one of two groups: in the magnesium group, patients received MgSO4 30mgkg1 intravenously, for 10 min, and then a continuous intravenous infusion at a rate of 1 g h-1. The control group received the same volume of physiological saline. Neuromuscular function was evaluated continuously in both groups. MAIN OUTCOME MEASURES Total recovery time was the primary outcome. Onset time, clinical duration, recovery index and recovery time were considered as secondary endpoints. Values are given as mean [SD]. RESULTS Total recovery time from neuromuscular block (NMB) was 113 [36] min in the magnesium group and 101 [39] min in the control group. Clinical duration was 69 [23] min in the magnesium group and 59 [28] min in the control group. Recovery index was 19 [36] min in the magnesium group and 17 [6] min in the control group. Recovery timewas 44 [22] min in the magnesium group and 42 [18] min in the control group. There were no statistically significant differences between the groups in any of the recovery indices. In the magnesium group, the mean onset time was 144 [58] s, significantly shorter than the onset time in the group that received physiological saline, which was 187 [90] s (P-0.03). Group variances were compared using an F test: onset time varied significantly less in the magnesium group (P-0.02). CONCLUSION In oncology patients of 60 or more years of age, preadministration of MgSO4, with the doses used in this study, significantly reduced the onset time of NMB induced by rocuronium. © 2013 European Society of Anaesthesiology.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The efficiency of sources used for soil acidity correction depends on reactivity rate (RR) and neutralization power (NP), indicated by effective calcium carbonate (ECC). Few studies establish relative efficiency of reactivity (RER) for silicate particle-size fractions, therefore, the RER applied for lime are used. This study aimed to evaluate the reactivity of silicate materials affected by particle size throughout incubation periods in comparison to lime, and to calculate the RER for silicate particle-size fractions. Six correction sources were evaluated: three slags from distinct origins, dolomitic and calcitic lime separated into four particle-size fractions (2, 0.84, 0.30 and <0.30-mm sieves), and wollastonite, as an additional treatment. The treatments were applied to three soils with different texture classes. The dose of neutralizing material (calcium and magnesium oxides) was applied at equal quantities, and the only variation was the particle-size material. After a 90-day incubation period, the RER was calculated for each particle-size fraction, as well as the RR and ECC of each source. The neutralization of soil acidity of the same particle-size fraction for different sources showed distinct solubility and a distinct reaction between silicates and lime. The RER for slag were higher than the limits established by Brazilian legislation, indicating that the method used for limes should not be used for the slags studied here.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)