963 resultados para lithium conductor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A solid state lithium metal battery based on a lithium garnet material was developed, constructed and tested. Specifically, a porous-dense-porous trilayer structure was fabricated by tape casting, a roll-to-roll technique conducive to high volume manufacturing. The high density and thin center layer (< 20 μm) effectively blocks dendrites even over hundreds of cycles. The microstructured porous layers, serving as electrode supports, are demonstrated to increase the interfacial surface area available to the electrodes and increase cathode loading. Reproducibility of flat, well sintered ceramics was achieved with consistent powderbed lattice parameter and ball milling of powderbed. Together, the resistance of the LLCZN trilayer was measured at an average of 7.6 ohm-cm2 in a symmetric lithium cell, significantly lower than any other reported literature results. Building on these results, a full cell with a lithium metal anode, LLCZN trilayer electrolyte, and LiCoO2 cathode was cycled 100 cycles without decay and an average ASR of 117 ohm-cm2. After cycling, the cell was held at open circuit for 24 hours without any voltage fade, demonstrating the absence of a dendrite or short-circuit of any type. Cost calculations guided the optimization of a trilayer structure predicted that resulting cells will be highly competitive in the marketplace as intrinsically safe lithium batteries with energy densities greater than 300 Wh/kg and 1000 Wh/L for under $100/kWh. Also in the pursuit of solid state batteries, an improved Na+ superionic conductor (NASICON) composition, Na3Zr2Si2PO12, was developed with a conductivity of 1.9x10-3 S/cm. New super-lithiated lithium garnet compositions, Li7.06La3Zr1.94Y0.06O12 and Li7.16La3Zr1.84Y0.16O12, were developed and studied revealing insights about the mechanisms of conductivity in lithium garnets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 3D mesoporous TiO2 material with well-developed mesostructure is prepared in the form of a binder-free thin (100 nm) film and studied as potential candidate for the negative electrode in lithium microbatteries. By appropriate thermal treatments, the selected crystal structure (anatase, rutile, or amorphous), and micro-/mesostructure of the materials was obtained. The effects of voltage window and prelithiation treatment improved first cycle reversibility up to 86% and capacity retention of 90% over 100 cycles. After a prolonged intercalation of lithium ions in ordered mesoporous TiO2 appeared small particles assigned to Li2Ti2O4 with cubic structure as observed from ex-situ TEM micrographs. This study highlights the flexibility of the potential window to which the electrode can operate. Maximum capacity values over 100 cycles of 470 μA h cm−2 μm−1 and 177 μA h cm−2 μm−1 are obtained for voltage ranges of 0.1–2.6 V and 1.0–2.6 V, respectively. The observed values are between 6 and 2 times higher than those obtained for films with 600 nm (80 μA h cm−2 μm−1) and 900 nm (92 μA h cm−2 μm−1) lengths. This indicates that 100 nm thin TiO2 films with high accessibility show finite-length type diffusion which is interesting for this particular application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the application of alchemical free energy methods and coarse-grained models to study two key problems: (i) co-translational protein targeting and insertion to direct membrane proteins to the endoplasmic reticulum for proper localization and folding, (ii) lithium dendrite formation during recharging of lithium metal batteries. We show that conformational changes in the signal recognition particle, a central component of the protein targeting machinery, confer additional specificity during the the recognition of signal sequences. We then develop a three-dimensional coarse-grained model to study the long-timescale dynamics of membrane protein integration at the translocon and a framework for the calculation of binding free energies between the ribosome and translocon. Finally, we develop a coarse-grained model to capture the dynamics of lithium deposition and dissolution at the electrode interface with time-dependent voltages to show that pulse plating and reverse pulse plating methods can mitigate dendrite growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose here a novel liquid dendrimer-based single ion conductor as a potential alternative to conventional molecular liquid solvent-salt solutions in rechargeable batteries, sensors and actuators. A specific change from ester (-COOR) to cyano (-CN) terminated peripheral groups in generation-one poly(propyl ether imine) (G1-PETIM)-lithium salt complexes results in a remarkable switchover from a high cation (tLi+ = 0.9 for -COOR) to a high anion (tPF6- = 0.8 for -CN) transference number. This observed switchover draws an interesting analogy with the concept of heterogeneous doping, applied successfully to account for similar changes in ionic conductivity arising out of dispersion of insulator particle inclusions in weak inorganic solid electrolytes. The change in peripheral group simultaneously affects the effective ionic conductivity, with the room temperature ionic conductivity of PETIM-CN (1.9 × 10-5 Ω-1 cm-1) being an order of magnitude higher than PETIM-COOR (1.9 × 10-6 Ω-1 cm-1). Notably, no significant changes are observed in the lithium mobility even following changes in viscosity due to the change in the peripheral group. Changes in the peripheral chemical functionality directly influence the anion mobility, being lower in PETIM-COOR than in PETIM-CN, which ultimately becomes the sole parameter controlling the effective transport and electrochemical properties of the dendrimer electrolytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a growing interest to hybrid energy storage devices, such as lithium-ion capacitors, in which battery-type electrodes are combined with capacitor-type ones. It is anticipated that the energy density (either gravimetric or volumetric) of lithium-ion capacitors is improved if pseudocapacitive or fast insertion materials are used instead of conventional activated carbon (AC) in the capacitor-type electrode. MXenes, a new family of two-dimensional transition metal carbides, demonstrate metallic conductivity and fast charge-discharge behavior that make them suitable for this application. In this study, we move beyond single electrodes, half-cell studies and demonstrate three types of hybrid cells using Nb2CTx-carbon nanotube (CNT) films. It is shown that lithiated graphite/Nb2CTx-CNT, Nb2CTx-CNT/LiFePO4 and lithiated Nb2CTx-CNT/Nb2CTx-CNT cells are all able to operate within 3 V voltage windows and deliver capacities of 43, 24 and 36 mAh/g (per total weight of two electrodes), respectively. Moreover, the polarity of the electrodes can be reversed in the symmetric Nb2CTx-CNT cells from providing a positive potential between 0 and 3 V to a negative one from -3 to 0 V. It is shown that the volumetric energy density (50-70 Wh/L) of our first-generation devices with MXene electrodes exceeds that of a lithium titanate/AC capacitor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tailoring the nanostructures of electrode materials is an effective way to enhance their electrochemical performance for energy storage. Herein, an ice-templating "bricks-and-mortar" assembly approach is reported to make ribbon-like V2O5 nanoparticles and CNTs integrated into a two-dimensional (2D) porous sheet-like V2O5-CNT nanocomposite. The obtained sheet-like V2O5-CNT nanocomposite possesses unique structural characteristics, including a hierarchical porous structure, 2D morphology, large specific surface area and internal conducting networks, which lead to superior electrochemical performances in terms of long-term cyclability and significantly enhanced rate capability when used as a cathode material for LIBs. The sheet-like V2O5-CNT nanocomposite can charge/discharge at high rates of 5C, 10C and 20C, with discharge capacities of approximately 240 mA h g-1, 180 mA h g-1, and 160 mA h g-1, respectively. It also retains 71% of the initial discharge capacity after 300 cycles at a high rate of 5C, with only 0.097% capacity loss per cycle. The rate capability and cycling performance of the sheet-like V2O5-CNT nanocomposite are significantly better than those of commercial V2O5 and most of the reported V2O5 nanocomposite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developing synthetic methods for graphene based cathode materials, with low cost and in an environmentally friendly way, is necessary for industrial production. Although the precursor of graphene is abundant on the earth, the most common precursor of graphene is graphene oxide (GO), and it needs many steps and reagents for transformation to graphite. The traditional approach for the synthesis of GO needs many chemicals, thus leading to a high cost for production and potentially great amounts of damage to the environment. In this study, we develop a simple wet ball-milling method to construct a V2O5/graphene hybrid structure in which nanometre-sized V2O5 particles/aggregates are well embedded and uniformly dispersed into the crumpled and flexible graphene sheets generated by in situ conversion of bulk graphite. The combination of V2O5 nanoparticles/aggregates and in situ graphene leads the hybrid to exhibit a markedly enhanced discharge capacity, excellent rate capability, and good cycling stability. This study suggests that nanostructured metal oxide electrodes integrated with graphene can address the poor cycling issues of electrode materials that suffer from low electronic and ionic conductivities. This simple wet ball-milling method can potentially be used to prepare various graphene based hybrid electrodes for large scale energy storage applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high voltage LiNi0.5Mn1.5O4 cathode with a disordered spinel structure is synthesized by a glycine-assisted low-temperature reaction follows by a thermal treatment at 750 °C, 850 °C, and 950 °C for 12 h. Glycine is used as a chelating agent for the first time to build required environment for shaping the precursor of LiNi0.5Mn1.5O4 materials. The microstructure and morphology of the LiNi0.5Mn1.5O4 product are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller, and transmission electron microscopy. The sample prepares at 750 °C reveals small particles with well-defined crystals as confirmed by electron microscopy. Electrochemical results demonstrate that LiNi0.5Mn1.5O4 electrode anneal at 750 °C (compare to other two samples) delivers the highest reversible capacity of 110 mAh g-1 at 0.2C after 100 cycles with good rate capability. The enhanced electrochemical performance could be attributed to the smaller particle sizes as well as well-defined crystals which provide a directional and shorter diffusion path length for Li+ transportation within the crystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Li(+) cation conducting ionomers based on poly(2-acrylamido-2-methyl-1-propane sulphonic acid) (PAMPS) incorporating a low molecular weight plasticizer have been characterized. Previously we have observed an apparent decoupling of ionic conductivity and lithium ion dynamics from the Tg of this ionomer along with an increase in ionic conductivity obtained by incorporating a quaternary ammonium co-cation. The incorporation of tetraglyme as a coordinating plasticizer was investigated in order to further improve the ion dissociation and dynamics. Solid-state NMR, thermal analysis, impedance spectroscopy and infrared spectroscopy were used to characterize these systems. As expected, the glass transition temperature Tg decreased upon the addition of the plasticizer. However, in contrast to the previously reported Na-conducting systems, the ionic conductivity was also decreased by several orders of magnitude, indicating that the tetraglyme recouples the conductivity back to the polymer dynamics. Temperature dependent (7)Li NMR line width and T1 measurements were used to probe the Li(+) dynamics, which were found to be dependent on the Li(+) concentration, the nature of the co-cation and the presence or absence of tetraglyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solid-state ion conductors based on organic ionic plastic crystals (OIPCs) are a promising alternative to conventional liquid electrolytes in lithium battery applications. The OIPC-based electrolytes are safe (nonflammable) and flexible in terms of design and operating conditions. Magnetic resonance imaging (MRI) is a powerful noninvasive method enabling visualization of various chemical phenomena. Here, we report a first quantitative in situ MRI study of operating solid-state lithium cells. Lithium ion transfer into the OIPC matrix during the ongoing discharge of the anode results in partial liquefaction of the electrolyte at the metal interface. The developed liquid component enhances the ion transport across the interface and overall battery performance. Displacement of the liquefaction front is accompanied by a faster Li transfer through the grain boundaries and depletion at the cathode. The demonstrated solid-liquid hybrid properties, inherent in many OIPCs, combine benefits of highly conductive ionic liquids with safety and flexibility of solids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low cost electrophoretic deposition (EPD) process was successfully used for liquid metal thin film deposition with a high depositing rate of 0.6 µ/min. Furthermore, silicon nano-powder and liquid metal were then simultaneously deposited as the negative electrode of lithium-ion battery by a technology called co-EPD. The liquid metal was hoping to act as the matrix for silicon particles during lithium ion insertion and distraction. Half-cell testing was performed using as prepared co-EPD sample. An initial discharge capacity of 1500 mAh/g was reported for nano-silicon and galinstan electrode, although the capacity fading issue of these samples was also observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen has been considered as a potentially efficient and environmentally friendly alternative energy solution. However, one of the most important scientific and technical challenges that the “hydrogen economy” faces is the development of safe and economically viable on-board hydrogen storage for fuel cell applications, especially to the transportation sector. Ammonia borane (BH3NH3), a solid state hydrogen storage material, possesses exceptionally high hydrogen content (19.6 wt%).However, a fairly high temperature is required to release all the hydrogen atoms, along with the emission of toxic borazine. Recently research interests are focusing on the improvement of H2 discharge from ammonia borane (AB) including lowering the dehydrogenation temperature and enhancing hydrogen release rate using different techniques. Till now the detailed information about the bonding characteristics of AB is not sufficient to understand details about its phases and structures. Elemental substitution of ammonia borane produces metal amidoboranes. Introduction of metal atoms to the ammonia borane structure may alter the bonding characteristics. Lithium amidoborane is synthesized by ball milling of ammonia borane and lithium hydride. High pressure study of molecular crystal provides unique insight into the intermolecular bonding forces and phase stability. During this dissertation, Raman spectroscopic study of lithium amidoborane has been carried out at high pressure in a diamond anvil cell. It has been identified that there is no dihydrogen bond in the lithium amidoborane structure, whereas dihydrogen bond is the characteristic bond of the parent compound ammonia borane. It has also been identified that the B-H bond becomes weaker, whereas B-N and N-H bonds become stronger than those in the parent compound ammonia borane. At high pressure up to 15 GPa, Raman spectroscopic study indicates two phase transformations of lithium amidoborane, whereas synchrotron X-ray diffraction data indicates only one phase transformation of this material. Pressure and temperature has a significant effect on the structural stability of ammonia borane. This dissertation explored the phase transformation behavior of ammonia borane at high pressure and low temperature using in situ Raman spectroscopy. The P-T phase boundary between the tetragonal (I4mm) and orthorhombic (Pmn21) phases of ammonia borane has been determined. The transition has a positive Clapeyron slope which indicates the transition is of exothermic in nature. Influence of nanoconfinemment on the I4mm to Pmn21 phase transition of ammonia borane was also investigated. Mesoporus silica scaffolds SBA-15 with pore size of ~8 nm and MCM-41 with pore size of 2.1-2.7 nm, were used to nanoconfine ammonia borane. During cooling down, the I4mm to Pmn21 phase transition was not observed in MCM-41 nanoconfined ammonia borane, whereas the SBA-15 nanocondfined ammonia borane shows the phase transition at ~195 K. Four new phases of ammonia borane were also identified at high pressure up to 15 GPa and low temperature down to 90 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lithium Ion (Li-Ion) batteries have got attention in recent decades because of their undisputable advantages over other types of batteries. They are used in so many our devices which we need in our daily life such as cell phones, lap top computers, cameras, and so many electronic devices. They also are being used in smart grids technology, stand-alone wind and solar systems, Hybrid Electric Vehicles (HEV), and Plug in Hybrid Electric Vehicles (PHEV). Despite the rapid increase in the use of Lit-ion batteries, the existence of limited battery models also inadequate and very complex models developed by chemists is the lack of useful models a significant matter. A battery management system (BMS) aims to optimize the use of the battery, making the whole system more reliable, durable and cost effective. Perhaps the most important function of the BMS is to provide an estimate of the State of Charge (SOC). SOC is the ratio of available ampere-hour (Ah) in the battery to the total Ah of a fully charged battery. The Open Circuit Voltage (OCV) of a fully relaxed battery has an approximate one-to-one relationship with the SOC. Therefore, if this voltage is known, the SOC can be found. However, the relaxed OCV can only be measured when the battery is relaxed and the internal battery chemistry has reached equilibrium. This thesis focuses on Li-ion battery cell modelling and SOC estimation. In particular, the thesis, introduces a simple but comprehensive model for the battery and a novel on-line, accurate and fast SOC estimation algorithm for the primary purpose of use in electric and hybrid-electric vehicles, and microgrid systems. The thesis aims to (i) form a baseline characterization for dynamic modeling; (ii) provide a tool for use in state-of-charge estimation. The proposed modelling and SOC estimation schemes are validated through comprehensive simulation and experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An improved method for mass production of good-quality graphene nanosheets (GNs) via ball milling pristine graphite with dry ice is presented. We also report the enhanced performance of these GNs as working electrode in lithium-ion batteries (LIBs). In this improved method, the decrease of necessary ball milling time from 48 to 24 h and the increase of Brunauer–Emmett–Teller surface area from 389.4 to 490 m2/g might be resulted from the proper mixing of stainless steel balls with different diameters and the optimization of agitation speed. The as-prepared GNs are investigated in detail using a number of techniques, such as scanning electron microscope, atomic force microscope, high-resolution transmission electron microscopy, selected area electron diffraction, X-ray diffractometer, and Fourier transform infrared spectroscopic. To demonstrate the potential applications of these GNs, the performances of the LIBs with pure Fe3O4 electrode and Fe3O4/graphene (Fe3O4/G) composite electrode were carefully evaluated. Compared to Fe3O4-LIBs, Fe3O4/G-LIBs exhibited prominently enhanced performance and a reversible specific capacity of 900 mAh g−1 after 5 cycles at 100 and 490 mAh g−1 after 5 cycles at 800 mA g−1. The improved cyclic stability and enhanced rate capability were also obtained.