998 resultados para light boxes
Resumo:
Synechocystis sp. PCC 6803 exposed to chill (5 degrees C)-light (100 mu mol photons m(-2) s(-1)) stress loses its ability to reinitiate growth. From a random insertion mutant library of Synechocystis sp. PCC 6803, a sll1242 mutant showing increased sensitivity to chill plus light was isolated. Mutant reconstruction and complementation with the wild-type gene confirmed the role of sll1242 in maintaining chill-light tolerance. At 15 degrees C, the autotrophic and mixotrophic growth of the mutant were both inhibited, paralleled by decreased photosynthetic activity. The expression of sll1242 was upregulated in Synechocystis sp. PCC 6803 after transfer from 30 to 15 degrees C at a photosynthetic photon flux density of 30 mu mol photons m(-2) S-1. sll1242, named ccr (cyanobacterial cold resistance gene)- 1, may be required for cold acclimation of cyanobacteria in light.
Resumo:
We describe our work on tight confinement of light using plasmonic structures. Polarization and modal degrees of freedom are shown to have a crucial effect on the nanoscale focusing properties of the optical field. © 2010 Optical Society of America.
Resumo:
We investigate numerically and experimentally the on-chip nanoscale focusing of surface plasmon polaritons (SPPs) in metallic nanotip coupled to the silicon waveguide. Strong field enhancement is observed at the apex of the tip. © 2010 Optical Society of America.
Resumo:
An iterative, self-correcting system for doing modal control using adaptive optics in a 50μm core diameter multimode fiber (MMF) is designed. It is shown experimentally to reduce the number of modes generated by 300%. © 2006 Optical Society of America.
Resumo:
An iterative, self-correcting system for doing modal control using adaptive optics in a 50μm core diameter multimode fiber (MMF) is designed. It is shown experimentally to reduce the number of modes generated by 300%. © 2006 Optical Society of America.
Resumo:
Through an acclimation period of 10 days, compared to white light, the maximal net photosynthetic rates were significantly higher for gametophytes of Undaria pinnatifida cultivated under blue light (400-500 nm), and were lower under red light (600-700 nm). Chlorophyll c and the carotenoid content of gametophytes were similar under blue light and red light but were much lower under white light. The growth rate of female gametophytes under blue light was higher than that under other lights, and the growth rate of male gametophytes showed little variation with respect to blue and white light. Male and female gametophytes were mixed together to form sporophytes under white, blue and red light. After approximately 5 days, 50% gametophytes became fertile under blue and white light, but remained vegetative under red light after 10 days.
Resumo:
Changing the ratio of light-harvesting pigments was regarded as an efficient way to improve the photosynthesis rate in microalgae, but the underlying mechanism is still unclear. In the present study, a mutant of Anabeana simensis (called SP) was selected from retrieved satellite cultures. Several parameters related with photosynthesis, such as the growth, photosynthesis rate, the content of photosynthetic pigment, low temperature fluorescence spectrum (77K) and electron transport rate, were compared with those of the wild type. It was found that the change in the ratio of light-harvesting pigments in the mutant led to more efficient light energy transfer and usage in mutant than in the wild type. This may be the reason why the mutant had higher photosynthesis and growth rates.
Resumo:
A model of the negative bias illumination stress instability in InGaZn oxide is presented, based on the photo-excitation of electrons from oxygen interstitials. The O interstitials are present to compensate hydrogen donors. The O interstitials are found to spontaneously form in O-rich conditions for Fermi energies at the conduction band edge, much more easily that in related oxides. The excited electrons give rise to a persistent photoconductivity due to an energy barrier to recombination. The formation energy of the O interstitials varies with their separation from the H donors, which leads to a voltage stress dependence on the compensation. © 2014 AIP Publishing LLC.
Resumo:
Immunoglobulin light chain cDNA sequences of a perciform fish, the mandarin fish Siniperca chuatsi were amplified from head kidney mRNA by reverse transcription (RT)-PCR and RACE methods using degenerated primer and gene specific ones. In cDNA sequences of the VL region, nucleotide exchanges were present mainly within CDRs, although a lesser degree of variability was also found in FRs. Moreover, the length of CDRI and CDR3 in the mandarin fish is shorter than in most other fish species. In the middle of S. chuatsi CL region, a microsatellite sequence (AGC)(6-8) was found, which is also present in another perciform species, the spotted wolffish (Anarhichas minor). The comparison of amino acid sequence of the mandarin fish CL domain with those of other vertebrates showed the highest degree of similarity of 94.5% to the spotted wolffish, while the similarity with rainbow trout (Oncorhynchus mykiss) Ig L1 (62.7%) and channel catfish (Ictalurus punctatus) Ig LG (55.9%) isotypes is also higher. However, there is only 50% identity in the VL regions between the mandarin fish and the wolffish. The sequence similarity of the mandarin fish CL domain with those of higher vertebrate did not readily allow it to be classified as kappa or lambda isotype. The phylogenetic analyses also demonstrated that the CL genes of the mandarin fish and most other teleost fish cluster as a separate branch out of the mammal kappa and lambda branches. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Chlorella pyrenoidosa was cultured with 350 and 700 p.p.m.v. CO2 at varied levels of light to see the impacts of doubled atmospheric CO2 concentration on its growth and photosynthesis. The CO2 enrichment did not affect the growth rate (mu), but significantly increased the cell density when light was sufficiently supplied. The CO2 enrichment significantly depressed light-saturated photosynthesis and dark respiration in the cells grown under a high-light regime, but not those under a low-light regime. The light-saturating point for photosynthesis and photosynthetic efficiency was not affected by the CO2 enrichment under either the high-light or low-light conditions.
Resumo:
The unicellular cyanobacterium Synechocystis sp. PCC6803 can grow heterotrophically in complete darkness, given that a brief period of illumination is supplemented every day (light-activated heterotrophic growth, LAHG), or under very weak ( < 0.5 mumol m(-2) s(-1)) but continuous light. By random insertion of the genome with an antibiotic resistance cassette, mutants defective in LAHG were generated. In two identical mutants, sll0886, a tetratricopeptide repeat (TPR)-family membrane protein gene, was disrupted. Targeted insertion of sll0886 and three downstream genes showed that the phenotype was not due to a polar effect. The sll0886 mutant shows normal photoheterotrophic growth when the light intensity is at 2.5 mumol m(-2) s(-1) or above, but no growth at 0.5 mumol m(-2) s(-1). Homologs to sll0886 are also present in cyanobacteria that are not known of LAHG. sll0886 and homologs may be involved in controlling different physiological processes that respond to light of low fluence. (C) 2003 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Decline of submersed macrophytes in Lake Donghu of China with the progress of eutrophication is assumedly due to low light stress by algae blooming. I conducted a laboratory experiment to study the impact of low-light stress on the growth of Potamogeton maackianus A. Been, a dominant submersed macrophyte of the lake before the 1970s. Plants were grown for six weeks in aquaria with Lake Donghu sediment and enriched water. Light delivered to aquaria was adjusted to simulate the typical Lake Donghu light intensities that exist at several water depths from 0.6m to 1.7m. Biomass growth of the plant was inversely related to light intensity at the simulated depths of greater than or equal to 1.0m (r = 0.96, p < 0.05, n=6) and was negative at the depths of greater than or equal to 1.4m. These results indicate that photosynthetic light saturation and compensation points of the plant in Lake Donghu should be ca. 0,9m and ca. 1.5m depths, respectively. Chlorophyll content, growth of main shoot, total shoot lengths and density of the plant all peaked at 1.2-1.3m simulated depths. These results indicate that P. maackianus responds to low light stress primarily by elongation of shoots, and increase of density. Its biomass growth and nutrient uptake rate did not correlate with the accelerated shoot growth. Below the light intensities of water deeper than 1.2-1.3m, shoot growth rate decreased. The flexible tolerant strategy of P. maackianus to low-light stress suggests that the disappearance of this plant from the lake was not mainly due to eutrophication-induced low-light stress.
Resumo:
The terrestrial blue-green alga (cyanobacterium), Nostoc flagelliforme, was cultured in air at various levels of CO2, light and watering to see their effects on its growth. The alga showed the highest relative growth rate at the conditions of high CO2 (1500 ppm), high light regime (219-414 mu mol m(-2)s(-1)) and twice daily watering, but the lowest rate at the conditions of low light (58-114 mu mol m(-2)s(-1)) and daily twice watering. Increased watering had little effect on growth rate at 350 ppm CO2, but increased by about 70% at 1500ppm CO2 under high light conditions. It was concluded that enriched CO2 could enhance the growth of N. flagelliforme when sufficient light and water was supplied.