997 resultados para light adaptation
Resumo:
For the past 10 years, mini-host models and in particular the greater wax moth Galleria mellonella have tended to become a surrogate for murine models of fungal infection mainly due to cost, ethical constraints and ease of use. Thus, methods to better assess the fungal pathogenesis in G. mellonella need to be developed. In this study, we implemented the detection of Candida albicans cells expressing the Gaussia princeps luciferase in its cell wall in infected larvae of G. mellonella. We demonstrated that detection and quantification of luminescence in the pulp of infected larvae is a reliable method to perform drug efficacy and C. albicans virulence assays as compared to fungal burden assay. Since the linearity of the bioluminescent signal, as compared to the CFU counts, has a correlation of R(2) = 0.62 and that this method is twice faster and less labor intensive than classical fungal burden assays, it could be applied to large scale studies. We next visualized and followed C. albicans infection in living G. mellonella larvae using a non-toxic and water-soluble coelenterazine formulation and a CCD camera that is commonly used for chemoluminescence signal detection. This work allowed us to follow for the first time C. albicans course of infection in G. mellonella during 4 days.
Resumo:
This study examined the effect of optic nerve disease, hence retinal ganglion cell loss, on non-visual functions related to melanopsin signalling. Test subjects were patients with bilateral visual loss and optic atrophy from either hereditary optic neuropathy (n = 11) or glaucoma (n = 11). We measured melatonin suppression, subjective sleepiness and cognitive functions in response to bright light exposure in the evening. We also quantified the post-illumination pupil response to a blue light stimulus. All results were compared to age-matched controls (n = 22). Both groups of patients showed similar melatonin suppression when compared to their controls. Greater melatonin suppression was intra-individually correlated to larger post-illumination pupil response in patients and controls. Only the glaucoma patients demonstrated a relative attenuation of their pupil response. In addition, they were sleepier with slower reaction times during nocturnal light exposure. In conclusion, glaucomatous, but not hereditary, optic neuropathy is associated with reduced acute light effects. At mild to moderate stages of disease, this is detected only in the pupil function and not in responses conveyed via the retinohypothalamic tract such as melatonin suppression.
Resumo:
Light-induced retinal degeneration is characterized by photoreceptor cell death. Many studies showed that photoreceptor demise is caspase-independent. In our laboratory we showed that leucocyte elastase inhibitor/LEI-derived DNase II (LEI/L-DNase II), a caspase-independent apoptotic pathway, is responsible for photoreceptor death. In this work, we investigated the activation of a pro-survival kinase, the protein kinase C (PKC) zeta. We show that light exposure induced PKC zeta activation. PKC zeta interacts with LEI/L-DNase II and controls its DNase activity by impairing its nuclear translocation. These results highlight the role of PKC zeta in retinal physiology and show that this kinase can control caspase-independent pathways.
Resumo:
Spectra of "white LEDs" are characterized by an intense emission in the blue region of the visible spectrum, absent in daylight spectra. This blue component and the high intensity of emission are the main sources of concern about the health risks of LEDs with respect to their toxicity to the eye and the retina. The aim of our study was to elucidate the role of blue light from LEDs in retinal damage. Commercially available white LEDs and four different blue LEDs (507, 473, 467, and 449nm) were used for exposure experiments on Wistar rats. Immunohistochemical stain, transmission electron microscopy, and Western blot were used to exam the retinas. We evaluated LED-induced retinal cell damage by studying oxidative stress, stress response pathways, and the identification of cell death pathways. LED light caused a state of suffering of the retina with oxidative damage and retinal injury. We observed a loss of photoreceptors and the activation of caspase-independent apoptosis, necroptosis, and necrosis. A wavelength dependence of the effects was observed. Phototoxicity of LEDs on the retina is characterized by a strong damage of photoreceptors and by the induction of necrosis.
Resumo:
Uncovering the genetic basis of phenotypic variation and the population history under which it established is key to understand the trajectories along which local adaptation evolves. Here, we investigated the genetic basis and evolutionary history of a clinal plumage color polymorphism in European barn owls (Tyto alba). Our results suggest that barn owls colonized the Western Palearctic in a ring-like manner around the Mediterranean and meet in secondary contact in Greece. Rufous coloration appears to be linked to a recently evolved nonsynonymous-derived variant of the melanocortin 1 receptor (MC1R) gene, which according to quantitative genetic analyses evolved under local adaptation during or following the colonization of Central Europe. Admixture patterns and linkage disequilibrium between the neutral genetic background and color found exclusively within the secondary contact zone suggest limited introgression at secondary contact. These results from a system reminiscent of ring species provide a striking example of how local adaptation can evolve from derived genetic variation.
Resumo:
Plant roots forage the soil for minerals whose concentrations can be orders of magnitude away from those required for plant cell function. Selective uptake in multicellular organisms critically requires epithelia with extracellular diffusion barriers. In plants, such a barrier is provided by the endodermis and its Casparian strips-cell wall impregnations analogous to animal tight and adherens junctions. Interestingly, the endodermis undergoes secondary differentiation, becoming coated with hydrophobic suberin, presumably switching from an actively absorbing to a protective epithelium. Here, we show that suberization responds to a wide range of nutrient stresses, mediated by the stress hormones abscisic acid and ethylene. We reveal a striking ability of the root to not only regulate synthesis of suberin, but also selectively degrade it in response to ethylene. Finally, we demonstrate that changes in suberization constitute physiologically relevant, adaptive responses, pointing to a pivotal role of the endodermal membrane in nutrient homeostasis.
Resumo:
Current obesity prevention strategies recommend increasing daily physical activity, assuming that increased activity will lead to corresponding increases in total energy expenditure and prevent or reverse energy imbalance and weight gain [1-3]. Such Additive total energy expenditure models are supported by exercise intervention and accelerometry studies reporting positive correlations between physical activity and total energy expenditure [4] but are challenged by ecological studies in humans and other species showing that more active populations do not have higher total energy expenditure [5-8]. Here we tested a Constrained total energy expenditure model, in which total energy expenditure increases with physical activity at low activity levels but plateaus at higher activity levels as the body adapts to maintain total energy expenditure within a narrow range. We compared total energy expenditure, measured using doubly labeled water, against physical activity, measured using accelerometry, for a large (n = 332) sample of adults living in five populations [9]. After adjusting for body size and composition, total energy expenditure was positively correlated with physical activity, but the relationship was markedly stronger over the lower range of physical activity. For subjects in the upper range of physical activity, total energy expenditure plateaued, supporting a Constrained total energy expenditure model. Body fat percentage and activity intensity appear to modulate the metabolic response to physical activity. Models of energy balance employed in public health [1-3] should be revised to better reflect the constrained nature of total energy expenditure and the complex effects of physical activity on metabolic physiology.
Resumo:
The study intended to determine motivational profiles of first-year undergraduates and aimed their characterization in terms of identity processes. First, a cluster analysis revealed five motivational profiles: combined (i.e., high quantity of motivation, low amotivation); intrinsic (i.e., high intrinsic, low introjected and external regulation, low amotivation); "demotivated" (i.e., very low quantity of motivation and amotivation); extrinsic (i.e., high extrinsic and identified regulation and low intrinsic and amotivation); and "amotivated" (i.e., low intrinsic and identified, very high amotivation). Second, using Lebart's (2000) methodology, the most characteristic identity processes were listed for each motivational cluster. Demotivated and amotivated profiles were refined in terms of adaptive and maladaptive forms of exploration. Notably, exploration in breadth and in depth were underrepresented in demotivated students compared to the total sample; commitment and ruminative exploration were under and overrepresented respectively in amotivated students. Educational and clinical implications are proposedand future research is suggested.
Resumo:
The purpose of this study is the adaptation and validation of the"Survey Work-Home Interaction NijmeGen" (SWING) developed by Geurts and colleagues to Spanish speaking countries (SWING-SSC). In order to analyze the questionnaire"s psychometric properties, confirmatory factor analysis (CFA) was carried out with a sample of 203 employees from various Spanish-speaking countries. Criterion related validity was tested by examining correlations between the SWING-SSC, and the theoretically relevant variables: health, role conflict, role clarity and supervisor support. Finally, reliability was tested analyzing the internal consistency of the scales. The analyses carried out indicate that SWING-SSC has good psychometric properties. In addition, the present results support the relation of the construct with health, role conflict, role clarity, and supervisor support. This study offers evidence for a sound work-life balance measure that contributes to the encouragement adequate conditions in the workplace, to reduce the conflict between the two spheres of professional and personal life, and to enhance positive relationships.
Resumo:
Objectif : Abstract Le but de cette étude consiste à étudier un éventuel lien entre le dosage du traitement de substitution par la Méthadone® pendant la grossesse et les issues obstétricales (rupture prématurée des membranes, menace d'accouchement prématuré), ainsi que néonatales (telles que le retard de croissance intrautérin, l'adaptation néonatale, le sevrage néonatal aux opiacés et l'hypoglycémie néonatale). Nous évaluerons également le développement psychomoteur de l'enfant à court terme (jusqu'à 18 mois de vie) via l'échelle de Griffiths. Méthode : Il s'agit d'une étude rétrospective sur 50 femmes enceintes sous Méthadone® suivies au CHUV et ayant accouché entre les années 2000 et 2010, ainsi que sur leurs enfants suivis par l'Unité du Développement du CHUV et évalués moyennant l'échelle du développement psychomoteur appelée Griffiths (il s'agit de 26 enfants entre 6-9 mois et 20 entre 18-19 mois). Pour ce faire, nous avons parcouru les différentes archives du CHUV (informatiques et papiers) dans un premier temps. Ces données ont été ensuite saisies dans un tableau Excel avant d'être analysées via STATA. Résumé des résultats : En fonction du dosage de la Méthadone®, 27% (dose plus faible) à 47 % (dose plus élevée) des femmes de notre collectif accouchent prématurément (p = 0.139). 48 % de leurs nouveau-nés présentent un retard de croissance intra-utérin (RCIU). Ce risque est d'autant plus élevé que la Méthadone est faiblement dosée (p = 0.073). Inversement au RCIU, le risque d'hypoglycémie néonatale croît avec la dose maternelle de Méthadone® (p = 0.148). La survenue du syndrome de sevrage néonatal aux opiacés ainsi que sa durée sont significativement plus importantes lorsque le dosage maternel de Méthadone est élevé (p = 0.022 ; p = 0.0118) ou lors de la prise concomitante de benzodiazépines (p = 0.004 ; p = 0.0129). La prise d'autres substances illicites a elle aussi tendance à prolonger le sevrage (p = 0.065). Entre 6-9 mois de vie, il y a plus de microcéphalie (périmètre crânien inférieur au P10) lorsque les enfants reçoivent une dose plus faible in utéro (p = 0.005). Le développement psychomoteur est quant à lui plus favorable lorsque le traitement de substitution est fortement dosé (p = 0.039) et que l'enfant vit chez sa mère biologique (p = 0.050) ou bénéficie d'un contact maternel régulier (p = 0.008). L'effet du dosage de la Méthadone® (p = 0.683) et du lieu de vie (p = 0.211) sur le développement psychomoteur ont néanmoins tendance à s'estomper entre 18-19 mois de vie. Conclusions : Bien qu'un traitement de substitution par la Méthadone hautement dosé augmente la survenue et la durée du syndrome de sevrage néonatal aux opiacés, il y a maintenant des indices pour un meilleur outcome de l'enfant lorsque la substitution est importante (moins de RCIU, de microcéphalie et un développement psychomoteur plus favorable). A propos de l'issue néonatale, tous les enfants nés de mères toxicodépendantes semblent être à risque d'hypoglycémie néonatale. Implications pratiques : Il serait désormais préférable d'augmenter les doses de substitution des futures mères toxicomanes d'autant plus lorsque celles-ci le réclament et tous leurs enfants devraient bénéficier d'une alimentation précoce et de contrôles glycémiques, même s'ils sont eutrophiques.