696 resultados para learning in projects


Relevância:

90.00% 90.00%

Publicador:

Resumo:

La relación estratégica comunitaria busca la atracción y retención de clientes a través del entendimiento de los consumidores dentro del contexto social que los rodea, es decir, una estrategia de mercadeo que busca relaciones duraderas con sus clientes a través del desarrollo de las comunidades en las cuales están insertos, logrando así beneficios para ambas partes, empresa y comunidad, y una relación de negocios sostenible a través del tiempo. Este trabajo busca determinar cuál es el uso y la efectividad de la relación estratégica comunitaria y el marketing en el sector aeronáutico, pasando por la identificación de las estrategias de mercadeo, los conceptos comunitarios y el uso de las estrategias comunitarias al interior del sector. Para determinar esto, se tomó a Avianca como muestra en el período 2004-2014 y se buscó la relación de su mercadeo y sus acciones sociales con las estrategias comunitarias, sin embargo los resultados arrojaron que no existe una relación estratégica comunitaria en la compañía, a pesar de manejar conceptos comunitarios en sus proyectos sociales.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Darrerament, l'interès pel desenvolupament d'aplicacions amb robots submarins autònoms (AUV) ha crescut de forma considerable. Els AUVs són atractius gràcies al seu tamany i el fet que no necessiten un operador humà per pilotar-los. Tot i això, és impossible comparar, en termes d'eficiència i flexibilitat, l'habilitat d'un pilot humà amb les escasses capacitats operatives que ofereixen els AUVs actuals. L'utilització de AUVs per cobrir grans àrees implica resoldre problemes complexos, especialment si es desitja que el nostre robot reaccioni en temps real a canvis sobtats en les condicions de treball. Per aquestes raons, el desenvolupament de sistemes de control autònom amb l'objectiu de millorar aquestes capacitats ha esdevingut una prioritat. Aquesta tesi tracta sobre el problema de la presa de decisions utilizant AUVs. El treball presentat es centra en l'estudi, disseny i aplicació de comportaments per a AUVs utilitzant tècniques d'aprenentatge per reforç (RL). La contribució principal d'aquesta tesi consisteix en l'aplicació de diverses tècniques de RL per tal de millorar l'autonomia dels robots submarins, amb l'objectiu final de demostrar la viabilitat d'aquests algoritmes per aprendre tasques submarines autònomes en temps real. En RL, el robot intenta maximitzar un reforç escalar obtingut com a conseqüència de la seva interacció amb l'entorn. L'objectiu és trobar una política òptima que relaciona tots els estats possibles amb les accions a executar per a cada estat que maximitzen la suma de reforços totals. Així, aquesta tesi investiga principalment dues tipologies d'algoritmes basats en RL: mètodes basats en funcions de valor (VF) i mètodes basats en el gradient (PG). Els resultats experimentals finals mostren el robot submarí Ictineu en una tasca autònoma real de seguiment de cables submarins. Per portar-la a terme, s'ha dissenyat un algoritme anomenat mètode d'Actor i Crític (AC), fruit de la fusió de mètodes VF amb tècniques de PG.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aquesta tesi proposa l'ús d'un seguit de tècniques pel control a alt nivell d'un robot autònom i també per l'aprenentatge automàtic de comportaments. L'objectiu principal de la tesis fou el de dotar d'intel·ligència als robots autònoms que han d'acomplir unes missions determinades en entorns desconeguts i no estructurats. Una de les premisses tingudes en compte en tots els passos d'aquesta tesis va ser la selecció d'aquelles tècniques que poguessin ésser aplicades en temps real, i demostrar-ne el seu funcionament amb experiments reals. El camp d'aplicació de tots els experiments es la robòtica submarina. En una primera part, la tesis es centra en el disseny d'una arquitectura de control que ha de permetre l'assoliment d'una missió prèviament definida. En particular, la tesis proposa l'ús de les arquitectures de control basades en comportaments per a l'assoliment de cada una de les tasques que composen la totalitat de la missió. Una arquitectura d'aquest tipus està formada per un conjunt independent de comportaments, els quals representen diferents intencions del robot (ex.: "anar a una posició", "evitar obstacles",...). Es presenta una recerca bibliogràfica sobre aquest camp i alhora es mostren els resultats d'aplicar quatre de les arquitectures basades en comportaments més representatives a una tasca concreta. De l'anàlisi dels resultats se'n deriva que un dels factors que més influeixen en el rendiment d'aquestes arquitectures, és la metodologia emprada per coordinar les respostes dels comportaments. Per una banda, la coordinació competitiva és aquella en que només un dels comportaments controla el robot. Per altra banda, en la coordinació cooperativa el control del robot és realitza a partir d'una fusió de totes les respostes dels comportaments actius. La tesis, proposa un esquema híbrid d'arquitectura capaç de beneficiar-se dels principals avantatges d'ambdues metodologies. En una segona part, la tesis proposa la utilització de l'aprenentatge per reforç per aprendre l'estructura interna dels comportaments. Aquest tipus d'aprenentatge és adequat per entorns desconeguts i el procés d'aprenentatge es realitza al mateix temps que el robot està explorant l'entorn. La tesis presenta també un estat de l'art d'aquest camp, en el que es detallen els principals problemes que apareixen en utilitzar els algoritmes d'aprenentatge per reforç en aplicacions reals, com la robòtica. El problema de la generalització és un dels que més influeix i consisteix en permetre l'ús de variables continues sense augmentar substancialment el temps de convergència. Després de descriure breument les principals metodologies per generalitzar, la tesis proposa l'ús d'una xarxa neural combinada amb l'algoritme d'aprenentatge per reforç Q_learning. Aquesta combinació proporciona una gran capacitat de generalització i una molt bona disposició per aprendre en tasques de robòtica amb exigències de temps real. No obstant, les xarxes neurals són aproximadors de funcions no-locals, el que significa que en treballar amb un conjunt de dades no homogeni es produeix una interferència: aprendre en un subconjunt de l'espai significa desaprendre en la resta de l'espai. El problema de la interferència afecta de manera directa en robòtica, ja que l'exploració de l'espai es realitza sempre localment. L'algoritme proposat en la tesi té en compte aquest problema i manté una base de dades representativa de totes les zones explorades. Així doncs, totes les mostres de la base de dades s'utilitzen per actualitzar la xarxa neural, i per tant, l'aprenentatge és homogeni. Finalment, la tesi presenta els resultats obtinguts amb la arquitectura de control basada en comportaments i l'algoritme d'aprenentatge per reforç. Els experiments es realitzen amb el robot URIS, desenvolupat a la Universitat de Girona, i el comportament après és el seguiment d'un objecte mitjançant visió per computador. La tesi detalla tots els dispositius desenvolupats pels experiments així com les característiques del propi robot submarí. Els resultats obtinguts demostren la idoneïtat de les propostes en permetre l'aprenentatge del comportament en temps real. En un segon apartat de resultats es demostra la capacitat de generalització de l'algoritme d'aprenentatge mitjançant el "benchmark" del "cotxe i la muntanya". Els resultats obtinguts en aquest problema milloren els resultats d'altres metodologies, demostrant la millor capacitat de generalització de les xarxes neurals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For several years, online educational tools such as Blackboard have been used by Universities to foster collaborative learning in an online setting. Such tools tend to be implemented in a top-down fashion, with the institution providing the tool to the students and instructing them to use it. Recently, however, a more informal, bottom up approach is increasingly being employed by the students themselves in the form of social networks such as Facebook. With over 9,000 registered Facebook users at the beginning of this study, rising to over 12,000 at the University of Reading alone, Facebook is becoming the de facto social network of choice for higher education students in the UK, and there was increasing anecdotal evidence that students were actively learning via Facebook rather than through BlackBoard. To test the validity of these anecdotes, a questionnaire was sent to students, asking them about their learning experiences via BlackBoard and Facebook. The results show that students are making use of the tools available to them even when there is no formal academic content, and that increased use of a social networking tool is correlated with a reported increase in learning as a result of that use.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this review, we consider three possible criteria by which knowledge might be regarded as implicit or inaccessible: It might be implicit only in the sense that it is difficult to articulate freely, or it might be implicit according to either an objective threshold or a subjective threshold. We evaluate evidence for these criteria in relation to artificial grammar learning, the control of complex systems, and sequence learning, respectively. We argue that the convincing evidence is not yet in, but construing the implicit nature of implicit learning in terms of a subjective threshold is most likely to prove fruitful for future research. Furthermore, the subjective threshold criterion may demarcate qualitatively different types of knowledge. We argue that (1) implicit, rather than explicit, knowledge is often relatively inflexible in transfer to different domains, (2) implicit, rather than explicit, learning occurs when attention is focused on specific items and not underlying rules, and (3) implicit learning and the resulting knowledge are often relatively robust.

Relevância:

90.00% 90.00%

Publicador: