985 resultados para leaf nitrogen content
Resumo:
The effect of Heterodera glycines on photosynthesis, leaf area and yield of soybean (Glycine max) was studied in two experiments carried out under greenhouse condition. Soybean seeds were sown in 1.5 l (Experiment 1) or 5.0 l (Experiment 2) clay pots filled with a mixture of field soil + sand (1:1) sterilized with methyl bromide. Eight days after sowing, seedlings were thinned to one per pot, and one day later inoculated with 0; 1.200; 3.600; 10.800; 32.400 or 97.200 J2 juveniles of H. glycines. Experiment 1 was carried out during the first 45 days of the inoculation while Experiment 2 was conducted during the whole cycle of the crop. Measurements of photosynthetic rate, stomatic conductance, chlorophyll fluorescence, leaf color, leaf area, and chlorophyll leaf content were taken at ten-day intervals throughout the experiments. Data on fresh root weight, top dry weight, grain yield, number of eggs/gram of roots, and nematode reproduction factor were obtained at the end of the trials. Each treatment was replicated ten times. There was a marked reduction in both photosynthetic rate and chlorophyll content, as well as an evident yellowing of the leaves of the infected plants. Even at the lowest Pi, the effects of H. glycines on the top dry weight or grain yield were quite severe. Despite the parasitism, soybean yield was highly correlated with the integrated leaf area and, accordingly, the use of this parameter was suggested for the design of potential damage prediction models that include physiological aspects of nematode-diseased plants.
Resumo:
Infection by Sugarcane yellow leaf virus (ScYLV) causes severe leaf symptoms in sugarcane (Saccharum spp.) hybrids, which indicate alterations in its photosynthetic apparatus. To gain an overview of the physiological status of infected plants, we evaluated chlorophyll a fluorescence and gas exchange assays, correlating the results with leaf metabolic surveys, i.e., photosynthetic pigments and carbohydrate contents. When compared to healthy plants, infected plants showed a reduction in potential quantum efficiency for photochemistry of photosystem (PSII) and alterations in the filling up of the plastoquinone (PQ) pool. They also showed reduction in the CO2 net exchange rates, probably as a consequence of impaired quantum yield. In addition, reductions were found in the contents of photosynthetic leaf pigments and in the ratio chlorophyll a/chlorophyll b (chla/chlb). Carbohydrate content in the leaves was increased as a secondary effect of the ScYLV infection. This article discusses the relation of virus replication and host defense responses with general alterations in the photosynthetic apparatus and in the metabolism of infected plants.
Resumo:
ABSTRACTWhile a number of papers have shown that subway systems have an impact on the air quality through the release of particulate matters, no information about the impact of such particles on tree attributes is available. Tree leaves from three different species from the exit side of a subway station in Rio de Janeiro, Brazil, were more asymmetrical than leaves from the entrance side. This leaves also presenting changes in leaves cuticle and chlorophyll content.
Resumo:
The objective of this study was to evaluate the effects of the application of different water depths and nitrogen and potassium doses in the quality of Tanzania grass, in the southern of the state of Tocantins. The experiment was conducted on strips of traditional sprinklers, and used, as treatments, a mixture of fertilizer combinations of N and K2O always in the ratio of 1 N:0.8 K2O. This study determined throughout the experiment: plant height (PH), the crude protein (CP) and neutral detergent fiber (NDF). The highest plant height obtained was 132.4 cm, with a fertilizer dose of 691.71 kg ha-1 in the proportion of N:0.8 K2O, in other words, 384.28 kg ha-1 of N and 307.43 kg ha-1 of K2O, and water depth of 80% of the ETc. The highest crude protein content was 12.2%, with the fertilizer dose application of 700 kg ha-1 yr-1 in the proportion of 1 N to 0.8 of K2O, in other words, 388.89 kg ha-1 of N and 311.11 kg ha-1 of K2O and absence of irrigation. The lowest level of neutral detergent fiber was 60.7% with the application of the smallest dose of fertilizer and highest water depth. It was concluded in this study that there was an increase in plant height by increasing the fertilizer dose and water depth. The crude protein content increased 5.4% in the dry season, by increasing the fertilizer dose and water depth. In the dry season, there was an increase of NDF content by 4.5% by increasing the application of fertilizer and water depth.
Resumo:
The objective of this study was to evaluate the performance of two genotypes of elephant grass, fertilized with and without N, for biomass production for energy use under the edaphoclimatic conditions of the Cerrado. The genotypes Roxo and Paraíso, grown in a field experiment in a Latosol in the Cerrado region were evaluated for biomass yield, nitrogen accumulation, C:N and stem:leaf ratios, fibre, ash and P and K contents and calorific value. The accumulated dry biomass ranged from 30 to 42 Mg ha-1 and showed no response to nitrogen fertilization with the lowest biomass obtained by the genotype Paraíso and the highest by Roxo. The total N accumulation followed the same pattern as for dry matter, ranging from 347 to 539 kg N ha-1. C:N and stem:leaf ratio of the biomass produced did not vary with treatments. The fibre contents were higher in genotype Paraíso and the highest levels of ash in the genotype Roxo. The K content in the biomass was higher in genotype Roxo and P did not vary between genotypes. The calorific value averaged 18 MJ kg-1 of dry matter and did not vary with the levels of N in leaves and stems of the plant. Both genotypes, independent of N fertilization, produced over 30 Mg ha-1 of biomass under Cerrado conditions.
Resumo:
The cassava leaf, waste generated in the harvest of the roots, is characterized by high content of protein, vitamins and minerals; however, its use is limited due to the high fiber content and antinutritional substances, which can be removed by obtaining protein concentrates. In this context, the objective of this study was to evaluate protein extraction processes, aiming the use of cassava leaves (Manihot esculenta Crantz) as an alternative protein. Four methods were tested: 1) Coagulation of Proteins by Lowering the Temperature, 2) Extraction by Isoelectric Precipitation, 3) Solubilization of Proteins and 4) Fermentation of Filter Leaf Juice. To obtain the concentrates, the use of fresh or dried leaves and extraction in one or two steps were also evaluated. The solubilization of proteins (method 3) showed a higher extraction yield; however, with concentrate of low quality. The fermentation of the juice (method 4) produced concentrates with higher quality and lower costs and the isoelectric precipitation (method 2) promoted the obtention of concentrates in less time, both with good prospects for use. The use of two extraction steps was not advantageous to the process and there was no difference between the use of fresh or dried leaf, and the use of fresh leaves is presented as a good option for the simplicity of the method.
Resumo:
Increasing levels of atmospheric ammonia from anthropogenic sources have become a serious problem for natural vegetation. Short-term effects of different ammoniacal sources on the N metabolism of Tillandsia pohliana, an atmospheric bromeliad, were investigated. One-year-old, aseptically grown plants were transferred to a modified Knudson medium lacking N for three weeks. Plants were subsequently transferred to Knudson media supplemented with 0.5, 1.0, or 1.5 mM of N in the forms of NH3 or NH4+ as the sole N source. The activities of glutamine synthetase (GS) and glutamate dehydrogenase (GDH-NADH) were determined after 40 h. The GS activity was stimulated significantly by increasing the levels of the gaseous form. The GDH-NADH activity increased significantly under increasing N concentrations with NH3, while no significant differences were observed with NH4+ as a N source. These results may reflect a faster NH3 absorption by T. pohliana compared to NH4+ uptake. The increased activity of GDH-NADH in NH3 treatment may play a role in protecting the cells from the toxic effects of increased endogenous level of free ammonium. A raise in the concentration of N, especially in the form of NH3, greatly increased the content of free amino acids and soluble proteins. A possible utilisation of T. pohliana to evaluate the changes of atmospheric gaseous ammonia is proposed.
Resumo:
Lianas are plants that depend on support to reach some appreciable height, and they represent an important structural component of tropical forests. Although they predominate in clearings and gaps, some species survive in the understory. Changes in irradiance between these environments can affect leaf morphology and absorption of photosynthetic active radiation (PAR). We had examined the effects of different light regimes on leaf optical properties, chlorophyll content, specific leaf area, and leaf surface morphology in young seedlings of Canavalia parviflora Benth. (Fabaceae) and Gouania virgata Reissk (Rhamnaceae). The seedlings were distributed on workbenches covered by different layers of neutral shade netting, thus creating three levels of light intensity corresponding to about 40%, 10% and 1.5% of solar irradiance. Plants growing in full sun were used as a control. Both species exhibited an increase in reflectance in full sun and alterations in leaf morphology. Reduction in irradiance induced an increase in absorptance (decrease in reflectance and transmittance) in C. parviflora leaves in the green due to higher chlorophyll content. In G. virgata the spectral leaf changes were less observable. However, the efficiency of absorption was more pronounced in G. virgata than in C. parviflora leaves under 40%, 10% and 1.5% photon flux density (PFD). The greater efficiency of absorption in G. virgata was due to a larger specific leaf area (SLA) under these conditions. The adjustments in leaf optical properties can aid these species in overall carbon gain under limited light conditions.
Resumo:
Previous studies showed that plants of Vernonia herbacea grown for one year under a limited nitrogen supply presented reduced growth and higher fructan content than plants treated with sufficient nitrogen supply. However, the total fructan production was similar in both plant groups due to the higher biomass of the underground reserve organ in nitrogen-sufficient (N-sufficient) plants. In the present study we aimed to evaluate if a stress growing condition under nitrogen-limited (N-limited) supply, following cultivation under N-sufficient supply would have a positive effect on fructan production. Plants cultivated during one year under N-sufficient supply (10.7 mmol L-1 N-NO3-) were separated in two groups. During the following six months, one group continued to receive the same treatment (control) while the other received an N-limited supply (1.3 mmol L-1 N-NO3-). Growth, photosynthesis and soluble carbohydrates were measured at days 0, 30, 60, 90 and 180. At day 30, plants transferred to N-limited supply showed a significant increase in growth and a decrease in fructan concentration, as a response to the stressing condition. However, in the following period growth was reduced and fructan concentration was increased, confirming the inverse relationship between nitrogen concentration and fructan content. After 180 days, although the fructan concentration in N-limited was significantly higher, with a fructan production of 6.0 g plant¹, the higher gain in rhizophore biomass after 18 months of cultivation in N-sufficient solution led to a fructan production of 8.3 g plant¹, thus surpassing the higher fructan concentration of N-limited plants.
Resumo:
Plants were regenerated from leaf-derived callus culture of Stylosanthes scabra, a polyploid legume tolerant to drought and adapted to acid soils. A total of 168 regenerants were planted out in Leonard jars in a complete randomized design. Nitrogen fixation and vegetative growth were indirectly evaluated by shoot dry weight, root dry weight, shoot N content and acetylene reduction activity. The results showed higher variation in the regenerants than in controls not submitted to tissue culture. Significant differences were found for all nitrogen fixation related-traits
Resumo:
Chickpea seed germination was carried out over a period of 6 days. Little variation in the nitrogen and total globulin content was observed. The major globulin (11 S type) showed higher variation after the 4th day of germination. The elution behaviour and distribution of the isolated major globulin fraction on Sepharose CL-6B chromatography showed little modification at the end of germination. On SDS-PAGE the peak eluted from Sepharose CL-6B showed changes in protein bands between 20 and 30 kDa and above 60 kDa, indicating protein degradation during the period. Proteolytic activity was detected in the albumin fraction of the seeds, which increased up to the fourth and then decreased up to the sixth day, when isolated chickpea total globulin and casein were used as substrates. Chickpea flour, isolated albumin and total globulin fractions did not show an increase for in vitro digestibility; however, the isolated major globulin was more susceptible to hydrolysis after germination.
Resumo:
Ce projet a pour but d’évaluer la capacité de la voie des pentoses phosphates (VPP) dans les racines transgéniques de pomme de terre (Solanum tuberosum) modifiées pour exprimer différents niveaux de l'hexokinase (HK) et de la triosephosphate isomérase cytosolique (cTPI). Dans les racines, la VPP alimente la voie de l’assimilation de l’azote en equivalents réducteurs et permet donc la biosynthèse des acides aminés. Le glucose-6-phosphate produit par l’HK est consommé par la partie oxydative de la VPP catalysée par la glucose-6-phosphate déshydrogénase (G6PDH) et la 6-phosphogluconate déshydrogénase (6PGDH). Les changements dans l'expression de HK et cTPI peuvent affecter le fonctionnement de la VPP et les mécanismes qui sont liés à l’utilisation des équivalents réducteurs produits par la VPP, comme l'assimilation de l’azote et la synthèse des acides aminés. Afin d’évaluer l’effet des manipulations génétiques de l’HK et de la cTPI sur l’assimilation de l’azote, nous avons cultivé les racines transgéniques sur des milieux contenant des concentrations élevées (7 mM) ou basses (0,7 mM) de nitrate d’ammonium comme source d’azote. Les résultats montrent que la culture sur un milieu riche en azote induit les activités G6PDH et 6PGDH. Les données montrent que la capacité de la VPP est plus grande avec des niveaux élevés en HK ou en cTPI. Nous avons aussi pu démontrer une plus grande activité spécifique de l’HK dans les conditions pauvres en azote. Ces données ont été complémentées par des mesures des pools d’acides aminés dans les racines transgéniques cultivées sur différents niveaux d’azote. Aucune tendance notable des pools d’acides aminés n’a été remarquée dans les racines modifiées pour leur contenu en HK suggèrant que la manipulation de HK n’affecte pas l'assimilation de l’azote. Dans les racines transgéniques modifiées pour la cTPI, les ratios Gln/Glu et Asn/Asp sont plus élevés chez les clones antisens, indiquant une assimilation de l’azote plus élevée. Ces résultats ont démontré l'activation de l'assimilation de l’azote chez les clones antisens cTPI dans les conditions élevées et basses d’azote alors que la manipulation de l’HK n’affecte pas l’assimilation de l’azote.
Resumo:
The most widely used methods to assess the nitrogen (N) status of winter wheat (Triticum aestivum L.) are the determination of plant total N by combustion, the testing of nitrate in the leaf tissue and the use of SPAD readings. However, due to their labor requirements or high costs these methods can hardly be applied to the huge wheat growing areas of the Northern China Plain. This study therefore examined an alternative method to measure the N status of wheat by using a digital camera to record the visible green light reflected from the plant canopy. The experiment was conducted near Beijing in a multi-factorial field trial with three levels of N. The intensity of green light reflected from the wheat canopy was compared to the total N concentration, to the nitrate concentration of the basal stem, and to the SPAD readings of leaves. The results show significant inverse relationships between greenness intensity, canopy total N, and SPAD readings at booting and flowering. At booting, sap nitrate <2000mgL^-1 was inversely related to greenness intensity and to sap nitrate concentration in the basal stem. At sap nitrate ~2000mgL^-1, the greenness intensity reached a plateau. At booting and flowering, significant inverse relationships between greenness intensity and shoot biomass were found. The results show the potential of the new method to assess the N status of winter wheat.
Resumo:
The use of renewable primary products as co-substrate or single substrate for biogas production has increased consistently over the last few years. Maize silage is the preferential energy crop used for fermentation due to its high methane (CH4) yield per hectare. Equally, the by-product, namely biogas slurry (BS), is used with increasing frequency as organic fertilizer to return nutrients to the soil and to maintain or increase the organic matter stocks and soil fertility. Studies concerning the application of energy crop-derived BS on the carbon (C) and nitrogen (N) mineralization dynamics are scarce. Thus, this thesis focused on the following objectives: I) The determination of the effects caused by rainfall patterns on the C and N dynamics from two contrasting organic fertilizers, namely BS from maize silage and composted cattle manure (CM), by monitoring emissions of nitrous oxide (N2O), carbon dioxide (CO2) and CH4 as well as leaching losses of C and N. II) The investigation of the impact of differences in soil moisture content after the application of BS and temperature on gaseous emissions (CO2, N2O and CH4) and leaching of C and N compounds. III) A comparison of BS properties obtained from biogas plants with different substrate inputs and operating parameters and their effect on C and N dynamics after application to differently textured soils with varying application rates and water contents. For the objectives I) and II) two experiments (experiment I and II) using undisturbed soil cores of a Haplic Luvisol were carried out. Objective III) was studied on a third experiment (experiment III) with disturbed soil samples. During experiment I three rainfall patterns were implemented including constant irrigation, continuous irrigation with periodic heavy rainfall events, and partial drying with rewetting periods. Biogas slurry and CM were applied at a rate of 100 kg N ha-1. During experiment II constant irrigation and an irrigation pattern with partial drying with rewetting periods were carried out at 13.5°C and 23.5°C. The application of BS took place either directly before a rewetting period or one week after the rewetting period stopped. Experiment III included two soils of different texture which were mixed with ten BS’s originating from ten different biogas plants. Treatments included low, medium and high BS-N application rates and water contents ranging from 50% to 100% of water holding capacity (WHC). Experiment I and II showed that after the application of BS cumulative N2O emissions were 4 times (162 mg N2O-N m-2) higher compared to the application of CM caused by a higher content of mineral N (Nmin) in the form of ammonium (NH4+) in the BS. The cumulative emissions of CO2, however, were on the same level for both fertilizers indicating similar amounts of readily available C after composting and fermentation of organic material. Leaching losses occurred predominantly in the mineral form of nitrate (NO3-) and were higher in BS amended soils (9 mg NO3--N m-2) compared to CM amended soils (5 mg NO3--N m-2). The rainfall pattern in experiment I and II merely affected the temporal production of C and N emissions resulting in reduced CO2 and enhanced N2O emissions during stronger irrigation events, but showed no effect on the cumulative emissions. Overall, a significant increase of CH4 consumption under inconstant irrigation was found. The time of fertilization had no effect on the overall C and N dynamics. Increasing temperature from 13.5°C to 23.5°C enhanced the CO2 and N2O emissions by a factor of 1.7 and 3.7, respectively. Due to the increased microbial activity with increasing temperature soil respiration was enhanced. This led to decreasing oxygen (O2) contents which in turn promoted denitrification in soil due to the extension of anaerobic microsites. Leaching losses of NO3- were also significantly affected by increasing temperature whereas the consumption of CH4 was not affected. The third experiment showed that the input materials of biogas plants affected the properties of the resulting BS. In particular the contents of DM and NH4+ were determined by the amount of added plant biomass and excrement-based biomass, respectively. Correlations between BS properties and CO2 or N2O emissions were not detected. Solely the ammonia (NH3) emissions showed a positive correlation with NH4+ content in BS as well as a negative correlation with the total C (Ct) content. The BS-N application rates affected the relative CO2 emissions (% of C supplied with BS) when applied to silty soil as well as the relative N2O emissions (% of N supplied with BS) when applied to sandy soil. The impacts on the C and N dynamics induced by BS application were exceeded by the differences induced by soil texture. Presumably, due to the higher clay content in silty soils, organic matter was stabilized by organo-mineral interactions and NH4+ was adsorbed at the cation exchange sites. Different water contents induced highest CO2 emissions and therefore optimal conditions for microbial activity at 75% of WHC in both soils. Cumulative nitrification was also highest at 75% and 50% of WHC whereas the relative N2O emissions increased with water content and showed higher N2O losses in sandy soils. In summary it can be stated that the findings of the present thesis confirmed the high fertilizer value of BS’s, caused by high concentrations of NH4+ and labile organic compounds such as readily available carbon. These attributes of BS’s are to a great extent independent of the input materials of biogas plants. However, considerably gaseous and leaching losses of N may occur especially at high moisture contents. The emissions of N2O after field application corresponded with those of animal slurries.
Resumo:
The objective of this study was to report single season effects of wood biochar (char) application coupled with N fertilization on soil chemical properties, aerobic rice growth and grain yield in a clayey Rhodic Ferralsol in the Brazilian Savannah. Char application effected an increase in soil pH, K, Ca, Mg, CEC, Mn and nitrate while decreasing Al content and potential acidity of soils. No distinct effect of char application on grain yield of aerobic rice was observed. We believe that soil properties impacted by char application were inconsequential for rice yields because neither water, low pH, nor the availability of K or P were limiting factors for rice production. Rate of char above 16 Mg ha^(−1) reduced leaf area index and total shoot dry matter by 72 days after sowing. The number of panicles infected by rice blast decreased with increasing char rate. Increased dry matter beyond the remobilization capacity of the crop, and high number of panicles infected by rice blast were the likely cause of the lower grain yield observed when more than 60 kg N ha^(−1) was applied. The optimal rate of N was 46 kg ha^(−1) and resulted in a rice grain yield above 3 Mg ha^(−1).