952 resultados para knowledge application
Resumo:
Purpose – This paper describes a “work in progress” research project being carried out with a public health care provider in the UK, a large NHS hospital Trust. Enhanced engagement with patients is one of the Trust’s core principles, but it is recognised that much more needs to be done to achieve this, and that ICT systems may be able to provide some support. The project is intended to find ways to better capture and evaluate the “voice of the patient” in order to lead to improvements in health care quality, safety and effectiveness. Design/methodology/approach – We propose to investigate the use of a patient-orientated knowledge management system (KMS) in managing knowledge about and from patients. The study is a mixed methods (quantitative and qualitative) investigation based on traditional action research, intended to answer the following three research questions: (1) How can a KMS be used as a mechanism to capture and evaluate patient experiences to provoke patient service change (2) How can the KMS assist in providing a mechanism for systematising patient engagement? (3) How can patient feedback be used to stimulate improvements in care, quality and safety? Originality/value –This methodology aims to involve patients at all phases of the study from its initial design onwards, thus leading to an understanding of the issues associated with using a KMS to manage knowledge about and for patients that is driven by the patients themselves. Practical implications – The outcomes of the project for the collaborating hospital will be firstly, a system for capturing and evaluating knowledge about and from patients, and then as a consequence, improved outcomes for both the patients and the service provider. More generally, it will produce a set of guidelines for managing patient knowledge in an NHS hospital that have been tested in one case example.
Resumo:
This paper reports on a work-in-progress project on the management of patient knowledge in a UK general hospital. Greater involvement of patients is generally seen as crucial to the effective provision of healthcare in the future. However, this presents many challenges, especially in the light of the ageing population in most developed countries and the consequent increasing demand for healthcare. In the UK, there have been many attempts to increase patient involvement by the systematisation of patient feedback, but typically they have not been open to academic scrutiny or formal evaluation, nor have they used any knowledge management principles. The theoretical foundations for this project come first from service management and thence from customer knowledge management. Service management stresses the importance of the customer perspective. Healthcare clearly meets the definitions of a service even though it may also include some tangible elements such as surgery and provision of medication. Although regarding hospital patients purely as "customers" is a viewpoint that needs to be used with care, application of the theory offers potential benefits in healthcare. The two main elements we propose to use from the theory are the type of customer knowledge and its relationship to attributes of the quality of the service provided. The project is concerned with investigating various knowledge management systems (KMS) that are currently in use (or proposed) to systematise patient feedback in an NHS Trust hospital, to manage knowledge from and to a lesser extent about patients. The study is a mixed methods (quantitative and qualitative) action research investigation intended to answer the following three research questions: • How can a KMS be used as a mechanism to capture and evaluate patient experiences to provoke patient service change • How can the KMS assist in providing a mechanism for systematising patient engagement? • How can patient feedback be used to stimulate improvements in care, quality and safety?
Resumo:
To be competitive in contemporary turbulent environments, firms must be capable of processing huge amounts of information, and effectively convert it into actionable knowledge. This is particularly the case in the marketing context, where problems are also usually highly complex, unstructured and ill-defined. In recent years, the development of marketing management support systems has paralleled this evolution in informational problems faced by managers, leading to a growth in the study (and use) of artificial intelligence and soft computing methodologies. Here, we present and implement a novel intelligent system that incorporates fuzzy logic and genetic algorithms to operate in an unsupervised manner. This approach allows the discovery of interesting association rules, which can be linguistically interpreted, in large scale databases (KDD or Knowledge Discovery in Databases.) We then demonstrate its application to a distribution channel problem. It is shown how the proposed system is able to return a number of novel and potentially-interesting associations among variables. Thus, it is argued that our method has significant potential to improve the analysis of marketing and business databases in practice, especially in non-programmed decisional scenarios, as well as to assist scholarly researchers in their exploratory analysis. © 2013 Elsevier Inc.
Resumo:
Although fiber Bragg gratings (FBGs) have been widely used as advanced optical sensors, the cross-sensitivity between temperature and strain has complicated independent measurement procedures for these two measurands. We report here, for the first time to our knowledge, the results of a systematic investigation of the dependence of both temperature and strain sensitivities on the grating type, including the well-known Type I, Type IIA, and a new type which we have designated Type IA, using both hydrogen-free and hydrogenated B/Ge codoped fibers. We have identified distinct sensitivity characteristics for each grating type, and we have utilised them to implement a novel dual-grating, dual-parameter sensor device with performance superior to that of previously reported grating-based structures.
Resumo:
The evolution of a regional economy and its competitiveness capacity may involve multiple independent trajectories through which different sets of resources and capabilities evolve together. However, there is a dearth of evidence concerning how these trends are occurring across the globe. Based on the underlying tenets of the streams of research relating to regional competitiveness, knowledge cities/regions, and knowledge-based urban development, this paper seeks to present an empirical approach to establishing such evidence in relation to the recent development of the globe’s most productive regions from the viewpoint of their growth trajectories and the particular form of growth they are experiencing. The aim is to uncover the underlying structure of the changes in knowledge-based resources, capabilities and outputs across regions, and offer an analysis of these regions according to an uncovered set of key trends. The analysis identifies three key trends by which the economic evolution and growth patterns of these regions are differentiated – namely the Fifth Wave Growth, the Third & Fourth Wave Growth, and Government-led Third Wave Growth. Overall, spectacular knowledge-based growth of leading Chinese regions is evident, highlighting a continued shift of knowledge-based resources to Asia. In addition, a superstructure is observed at the global scale, consisting of two separate continuums that explicitly distinguish Chinese regions from the rest in terms of regional growth trajectories. © 2014 Elsevier Ltd. All rights reserved. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
The management and sharing of complex data, information and knowledge is a fundamental and growing concern in the Water and other Industries for a variety of reasons. For example, risks and uncertainties associated with climate, and other changes require knowledge to prepare for a range of future scenarios and potential extreme events. Formal ways in which knowledge can be established and managed can help deliver efficiencies on acquisition, structuring and filtering to provide only the essential aspects of the knowledge really needed. Ontologies are a key technology for this knowledge management. The construction of ontologies is a considerable overhead on any knowledge management programme. Hence current computer science research is investigating generating ontologies automatically from documents using text mining and natural language techniques. As an example of this, results from application of the Text2Onto tool to stakeholder documents for a project on sustainable water cycle management in new developments are presented. It is concluded that by adopting ontological representations sooner, rather than later in an analytical process, decision makers will be able to make better use of highly knowledgeable systems containing automated services to ensure that sustainability considerations are included. © 2010 The authors.
Resumo:
The programme of research examines knowledge workers, their relationships with organisations, and perceptions of management practices through the development of a theoretical model and knowledge worker archetypes. Knowledge worker and non-knowledge worker archetypes were established through an analysis of the extant literature. After an exploratory study of knowledge workers in a small software development company the archetypes were refined to include occupational classification data and the findings from Study 1. The Knowledge Worker Characteristics Model (KWCM) was developed as a theoretical framework in order to analyse differences between the two archetypes within the IT sector. The KWCM comprises of the variables within the job characteristics model, creativity, goal orientation, identification and commitment. In Study 2, a global web based survey was conducted. There were insufficient non-knowledge worker responses and therefore a cluster analysis was conducted to interrogate the archetypes further. This demonstrated, unexpectedly, that that there were marked differences within the knowledge worker archetypes suggesting the need to granulate the archetype further. The theoretical framework and the archetypes were revised (as programmers and web developers) and the research study was refocused to examine occupational differences within knowledge work. Findings from Study 2 identified that there were significant differences between the archetypes in relation to the KWCM. 19 semi-structured interviews were conducted in Study 3 in order to deepen the analysis using qualitative data and to examine perceptions of people management practices. The findings from both studies demonstrate that there were significant differences between the two groups but also that job challenge, problem solving, intrinsic reward and team identification were of importance to both groups of knowledge workers. This thesis presents an examination of knowledge workers’ perceptions of work, organisations and people management practices in the granulation and differentiation of occupational archetypes.
Resumo:
This paper introduces a new technique for optimizing the trading strategy of brokers that autonomously trade in re- tail and wholesale markets. Simultaneous optimization of re- tail and wholesale strategies has been considered by existing studies as intractable. Therefore, each of these strategies is optimized separately and their interdependence is generally ignored, with resulting broker agents not aiming for a glob- ally optimal retail and wholesale strategy. In this paper, we propose a novel formalization, based on a semi-Markov deci- sion process (SMDP), which globally and simultaneously op- timizes retail and wholesale strategies. The SMDP is solved using hierarchical reinforcement learning (HRL) in multi- agent environments. To address the curse of dimensionality, which arises when applying SMDP and HRL to complex de- cision problems, we propose an ecient knowledge transfer approach. This enables the reuse of learned trading skills in order to speed up the learning in new markets, at the same time as making the broker transportable across market envi- ronments. The proposed SMDP-broker has been thoroughly evaluated in two well-established multi-agent simulation en- vironments within the Trading Agent Competition (TAC) community. Analysis of controlled experiments shows that this broker can outperform the top TAC-brokers. More- over, our broker is able to perform well in a wide range of environments by re-using knowledge acquired in previously experienced settings.
Resumo:
Publication describes the experience in application of ontology technique to structuring of educational materials. Several topics of physics were formalized by means of Protégé software tool. Some principal problems in building of knowledge structure were found, so the discussion may interest not only ontology users, but also the developers of ontology tools.
Resumo:
With the development of the Internet culture applications are becoming simpler and simpler, users need less IT knowledge than earlier; from the ‘reader’ status they have reached that of the content creator and editor. In our days, the effects of the web are becoming stronger and stronger— computer-aided work is conventional almost everywhere. The spread of the Internet applications has several reasons: first of all, their accessibility is widespread; second, their use is not limited to only one computer or network on which they have been installed. Also, the quantity of accessible information now and earlier is not even comparable. Not counting the applications which need high broadband or high counting capacity (for example video editing), Internet applications are reaching the functionality of the thick clients associates. The most serious disadvantage of Internet applications – for security reasons — is that the resources of the client computer are not fully accessible or accessible only to a restricted extent. Still thick clients do have some advantages: better multimedia perdormance with more flexibility due to local resources and the possibility for offline working.
Resumo:
This PhD thesis analyses networks of knowledge flows, focusing on the role of indirect ties in the knowledge transfer, knowledge accumulation and knowledge creation process. It extends and improves existing methods for mapping networks of knowledge flows in two different applications and contributes to two stream of research. To support the underlying idea of this thesis, which is finding an alternative method to rank indirect network ties to shed a new light on the dynamics of knowledge transfer, we apply Ordered Weighted Averaging (OWA) to two different network contexts. Knowledge flows in patent citation networks and a company supply chain network are analysed using Social Network Analysis (SNA) and the OWA operator. The OWA is used here for the first time (i) to rank indirect citations in patent networks, providing new insight into their role in transferring knowledge among network nodes; and to analyse a long chain of patent generations along 13 years; (ii) to rank indirect relations in a company supply chain network, to shed light on the role of indirectly connected individuals involved in the knowledge transfer and creation processes and to contribute to the literature on knowledge management in a supply chain. In doing so, indirect ties are measured and their role as means of knowledge transfer is shown. Thus, this thesis represents a first attempt to bridge the OWA and SNA fields and to show that the two methods can be used together to enrich the understanding of the role of indirectly connected nodes in a network. More specifically, the OWA scores enrich our understanding of knowledge evolution over time within complex networks. Future research can show the usefulness of OWA operator in different complex networks, such as the on-line social networks that consists of thousand of nodes.
Resumo:
The paper gives an overview about the ongoing FP6-IST INFRAWEBS project and describes the main layers and software components embedded in an application oriented realisation framework. An important part of INFRAWEBS is a Semantic Web Unit (SWU) – a collaboration platform and interoperable middleware for ontology-based handling and maintaining of SWS. The framework provides knowledge about a specific domain and relies on ontologies to structure and exchange this knowledge to semantic service development modules. INFRAWEBS Designer and Composer are sub-modules of SWU responsible for creating Semantic Web Services using Case-Based Reasoning approach. The Service Access Middleware (SAM) is responsible for building up the communication channels between users and various other modules. It serves as a generic middleware for deployment of Semantic Web Services. This software toolset provides a development framework for creating and maintaining the full-life-cycle of Semantic Web Services with specific application support.
Resumo:
Motivation: In molecular biology, molecular events describe observable alterations of biomolecules, such as binding of proteins or RNA production. These events might be responsible for drug reactions or development of certain diseases. As such, biomedical event extraction, the process of automatically detecting description of molecular interactions in research articles, attracted substantial research interest recently. Event trigger identification, detecting the words describing the event types, is a crucial and prerequisite step in the pipeline process of biomedical event extraction. Taking the event types as classes, event trigger identification can be viewed as a classification task. For each word in a sentence, a trained classifier predicts whether the word corresponds to an event type and which event type based on the context features. Therefore, a well-designed feature set with a good level of discrimination and generalization is crucial for the performance of event trigger identification. Results: In this article, we propose a novel framework for event trigger identification. In particular, we learn biomedical domain knowledge from a large text corpus built from Medline and embed it into word features using neural language modeling. The embedded features are then combined with the syntactic and semantic context features using the multiple kernel learning method. The combined feature set is used for training the event trigger classifier. Experimental results on the golden standard corpus show that >2.5% improvement on F-score is achieved by the proposed framework when compared with the state-of-the-art approach, demonstrating the effectiveness of the proposed framework. © 2014 The Author 2014. The source code for the proposed framework is freely available and can be downloaded at http://cse.seu.edu.cn/people/zhoudeyu/ETI_Sourcecode.zip.
Resumo:
A new original method and CASE-tool of system analysis and modelling are represented. They are for the first time consistent with the requirements of object-oriented technology of informational systems design. They essentially facilitate the construction of organisational systems models and increase the quality of the organisational designing and basic technological processes of object application developing.
Resumo:
A major drawback of artificial neural networks is their black-box character. Therefore, the rule extraction algorithm is becoming more and more important in explaining the extracted rules from the neural networks. In this paper, we use a method that can be used for symbolic knowledge extraction from neural networks, once they have been trained with desired function. The basis of this method is the weights of the neural network trained. This method allows knowledge extraction from neural networks with continuous inputs and output as well as rule extraction. An example of the application is showed. This example is based on the extraction of average load demand of a power plant.