848 resultados para ionic and nonionic micelles


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This is an abstract of a presented talk at the European Biotechnology Conference held in Latvia during 05–07 May 2016

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Theobromine is an alkaloid present in cocoa and it is used in the treatment of atherosclerosis, hypertension, angina, among others. Due to its importance, the aim of this work consists on the development of an efficient and sustainable technology for the extraction of theobromine from cocoa beans. For the development of a purification technique for theobromine extracted from cocoa, aqueous biphasic systems (ABS) composed of ionic liquids (ILs) were initially studied to infer on the most promising systems. Cholinium-based ILs, based on a non-toxic and biocompatible cation, were used combined with two polymers (PPG 400 and PEG 400) and an inorganic salt (K3PO4). The respective phase diagrams at 298 K and atmospheric pressure were determined, as well as their extraction efficiencies for theobromine. The results obtained indicate that K3PO4 has a greater ability to induce the formation of ABS compared to PEG 400 and PPG 400. ABS consisting of K3PO4 also have a high potential for the extraction of theobromine, with extraction efficiencies ranging between 96.4 and 99.9 %. Based on the most promising ILs for the purification step, they were further used in aqueous solution to extract theobromine from cocoa beans, with extraction yields ranging between 4.5% and 6.5 wt%. Finally, ABS were applied to the aqueous solutions containing theobromine from the cocoa extract, with extraction efficiencies ranging between 96.7 and 99.0%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ionic liquid crystals (ILCs) allow the combination of the high ionic conductivity of ionic liquids (ILs) with the supramolecular organization of liquid crystals (LCs). ILCs salts were obtained by the assembly of long-chained diketonylpyridinium cations of the type [HOO^(R(n)pyH)] + and BF_(4)^(-) , ReO_(4)^(-), NO_(3)^(-), CF_(3)SO_(3)^(-), CuCl_(4)^(2-) counter-ions. We have studied the thermal behavior of five series of compounds by differential scanning calorimetry (DSC) and hot stage polarized light optical microscopy (POM). All materials show thermotropic mesomorphism as well as crystalline polymorphism. X-ray diffraction of the [HOO^(R(12)pyH)][ReO_(4)] crystal reveals a layered structure with alternating polar and apolar sublayers. The mesophases also exhibit a lamellar arrangement detected by variable temperature powder X-ray diffraction. The CuCl_(4)^(2-) salts exhibit the best LC properties followed by the ReO_(4)^(-) ones due to low melting temperature and wide range of existence. The conductivity was probed for the mesophases in one species each from the ReO_(4)^(-) , and CuCl_(4)^(2-) families, and for the solid phase in one of the non-mesomorphic Cl^(-) salts. The highest ionic conductivity was found for the smectic mesophase of the ReO_(4)^(-) containing salt, whereas the solid phases of all salts were dominated by electronic contributions. The ionic conductivity may be favored by the mesophase lamellar structure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ionic (Na+, K+, Cl-, PO43-, pH), total CO2, total calcium and protein concentrations in the plasma and endolymph of the inner ear were compared in trout Oncorhynchus mykiss and turbot Scophthalmus maximus. In both species, saccular endolymph was characterized by high levels of K+ and total CO2 and in trout by an alkaline pH, The kinetic characteristics of proton secretion across the saccular epithelium of trout were investigated using a titration technique in which isolated saccules were mounted as closed sacs. The rate of proton secretion depends strongly on the pH of the Ringer's solution and secretion stops at a pH below 7.2, Proton secretion is driven by an energy-dependent mechanism involving basolateral ouabain-sensitive Na+/K+ exchangers. Proton secretion was partially inhibited by acetazolamide and completely inhibited in Na+-free Ringer or in the presence of 1 mmol l(-1) amiloride. A cellular model stressing the importance of proton exchange through the saccular epithelium is proposed to explain the regulation of endolymph pH, a crucial factor for the deposition of otolith calcium.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The vapor liquid-equilibrium of water + ionic liquids is relevant for a wide range of applications of these compounds. It is usually measured by ebulliometric techniques, but these are time consuming and expensive. In this work it is shown that the activity coefficients of water in a series of cholinium-based ionic liquids can be reliably and quickly estimated at 298.15K using a humidity meter instrument. The cholinium based ionic liquids were chosen to test this experimental methodology since data for water activities of quaternary ammonium salts are available in the literature allowing the validation of the proposed technique. The COSMO-RS method provides a reliable description of the data and was also used to understand the molecular interactions occurring on these binary systems. The estimated excess enthalpies indicate that hydrogen bonding between water and ionic liquid anion is the dominant interaction that governs the behavior of water and cholinium-based ionic liquids systems, while the electrostatic-misfit and van der Walls forces have a minor contribution to the total excess enthalpies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For an adequate choice or design of ionic liquids, the knowledge of their interaction with other solutes and solvents is an essential feature for predicting the reactivity and selectivity of systems involving these compounds. In this work, the activity coefficient of water in several imidazolium-based ionic liquids with the common cation 1-butyl-3-methylimidazolium was measured at 298.2 K. To contribute to a deeper insight into the interaction between ionic liquids and water, COSMO-RS was used to predict the activity coefficient of water in the studied ionic liquids along with the excess enthalpies. The results showed good agreement between experimental and predicted activity coefficient of water in ionic liquids and that the interaction of water and ionic liquids was strongly influenced by the hydrogen bonding of the anion with water. Accordingly, the intensity of interaction of the anions with water can be ranked as the following: [CF3SO3](-) < [SCN](-) < [TFA](-) < Br(-) < [TOS](-) < Cl(-) < [CH3SO3](-) [DMP](-) < [Ac](-). In addition, fluorination and aromatization of anions are shown to reduce their interaction with water. The effect of temperature on the activity coefficient of water at infinite dilution was measured by inverse gas chromatography and predicted by COSMO-RS. Further analysis based on COSMO-RS provided information on the nature of hydrogen bonding between water and anion as well as the possibility of anion-water complex formation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aiming at the evaluation of the impact of the ionic liquids (ILs) cation symmetry on their phase behaviour, in this work, novel mutual solubilities with water of the symmetric series of [C(n)C(n)im][NTf2] (with n=1-5) were determined and compared with their isomeric forms of the asymmetric [C(n)C(1)im][NTf2] group. While the solubility of isomeric ILs in water was found to be similar, the solubility of water in ILs follows the same trend up to a maximum cation alkyl side chain length. For n >= 4 in [C(n)C(n)im][NTf2] the solubility of water in the asymmetric ILs is slightly higher than that observed in the symmetric counterparts. The thermodynamic properties of solution and solvation derived from the experimental solubility data of ILs in water at infinite dilution, namely the Gibbs energy, enthalpy and entropy were used to evaluate the cation symmetry effect on the ILs solvation. It is shown that the solubility of ILs in water is entropically driven and highly influenced by the cation size. Accordingly, it was found that the ILs solubility in water of both symmetric and asymmetric series depends on their molecular volume. Based on these findings, a linear correlation between the logarithm of the solubility of ILs in water and their molar volume is here proposed for the [NTf2]-based ILs at a fixed temperature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A systematic study of the interactions between water and alkyl methyl imidazolium chloride ionic liquids at 298.2 K, based on activity coefficients estimated from water activity measurements in the entire solubility range, is presented. The results show that the activity coefficients of water in the studied ILs are controlled by the hydrophilicity of the cation and the cation-anion interaction. To achieve a deeper understanding on the interactions between water and the ILs, COSMO-RS and FTIR spectroscopy were also applied. COSMO-RS was used to predict the activity coefficient of water in the studied ionic liquids along with the excess enthalpies, suggesting the formation of complexes between three molecules of water and one IL molecule. On the basis of quantum-chemical calculations, it is found that cation-anion interaction plays an important role upon the ability of the IL anion to interact with water. The changes in the peak positions/band areas of OH vibrational modes of water as a function of IL concentration were investigated, and the impact of the cation on the hydrogen-bonding network of water is identified and discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The solvation of cyano- (CN-) based ionic liquids (ILs) and their capacity to establish hydrogen bonds (H-bonds) with water was studied by means of experimental and computational approaches. Experimentally, water activity data were measured for aqueous solutions of ILs based on 1-butyl-3-methylimidazolium ([BMIM](+)) cation combined with one of the following anions: thiocyanate ([SCN](-)), dicyanamide ([DCA](-)), or tricyanomethanide ([TCM](-)), and of 1-ethyl-3-methylimidazolium tetracyanoborate ([EMIM][TCB]). From the latter data, water activity coefficients were estimated showing that [BMIM][SCN] and [BMIM][DCA], unlike [BMIM][TCM] and [EMIM][TCB], are able to establish favorable interactions with water. Computationally, the conductor like screening model for real solvents (COSMO-RS) was used to estimate the water activity coefficients which compare well with the experimental ones. From the COSMO-RS results, it is suggested that the polarity of each ion composing the ILs has a strong effect on the solvation phenomena. Furthermore, classical molecular dynamics (MD) simulations were performed for obtaining an atomic level picture of the local molecular neighborhood of the different species. From the experimental and computational data it is showed that increasing the number of CN groups in the ILs' anions does not enhance their ability to establish H-bonds with water but decreases their polarities, being [BMIM][DCA] and [BMIM][SCN] the ones presenting higher propensity to interact.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The activity coefficients at infinite dilution, gamma(infinity)(13), of 55 organic solutes and water in three ionic liquids with the common cation 1-butyl-3-methylimidazolium and the polar anions Cl--,Cl- [CH3SO3](-) and [(CH3)(2)PO4](-), were determined by (gas + liquid) chromatography at four temperatures in the range (358.15 to 388.15) K for alcohols and water, and T = (398.15 to 428.15) K for the other organic solutes including alkanes, cycloalkanes, alkenes, cycloalkenes, alkynes, ketones, ethers, cyclic ethers, aromatic hydrocarbons, esters, butyraldehyde, acetonitrile, pyridine, 1-nitropropane and thiophene. From the experimental gamma(infinity)(13) values, the partial molar excess Gibbs free energy, (G) over bar (E infinity)(m), enthalpy (H) over bar (E infinity)(m), and entropy (S) over bar (E infinity)(m), at infinite dilution, were estimated in order to provide more information about the interactions between the solutes and the ILs. Moreover, densities were measured and (gas + liquid) partition coefficients (KL) calculated. Selectivities at infinite dilution for some separation problems such as octane/benzene, cyclohexane/benzene and cyclohexane/thiophene were calculated using the measured gamma(infinity)(13), and compared with literature values for N-methyl-2-pyrrolidinone (NMP), sulfolane, and other ionic liquids with a common cation or anion of the ILs here studied. From the obtained infinite dilution selectivities and capacities, it can be concluded that the ILs studied may replace conventional entrainers applied for the separation processes of aliphatic/aromatic hydrocarbons.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to evaluate the impact of the alkyl side chain length and symmetry of the cation on the thermophysical properties of water-saturated ionic liquids (ILs), densities and viscosities as a function of temperature were measured at atmospheric pressure and in the (298.15 to 363.15) K temperature range, for systems containing two series of bis(trifluoromethylsulfonyl)imide-based compounds: the symmetric [C n C n im][NTf2] (with n = 1-8 and 10) and asymmetric [C n C1im][NTf2] (with n = 2-5, 7, 9 and 11) ILs. For water-saturated ILs, the density decreases with the increase of the alkyl side chain length while the viscosity increases with the size of the aliphatic tails. The saturation water solubility in each IL was further estimated with a reasonable agreement based on the densities of water-saturated ILs, further confirming that for the ILs investigated the volumetric mixing properties of ILs and water follow a near ideal behaviour. The water-saturated symmetric ILs generally present lower densities and viscosities than their asymmetric counterparts. From the experimental data, the isobaric thermal expansion coefficient and energy barrier were also estimated. A close correlation between the difference in the energy barrier values between the water-saturated and pure ILs and the water content in each IL was found, supporting that the decrease in the viscosity of ILs in presence of water is directly related with the decrease of the energy barrier.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, ionic liquids are evaluated for the first time as solvents for extraction and entrainers in separation processes involving terpenes and terpenoids. For that purpose, activity coefficients at infinite dilution, γ13 ∞, of terpenes and terpenoids, in the ionic liquids [C4mim]Cl, [C4mim][CH3SO3], [C4mim][(CH3)2PO4] and [C4mim][CF3SO3] were determined by gas−liquid chromatography at six temperatures in the range 398.15 to 448.15 K. On the basis of the experimental values, a correlation of γ13 ∞ with an increase of the solubility parameters is proposed. The infinite dilution thermodynamic functions were calculated showing the entropic effect is dominant over the enthalpic. Gas−liquid partition coefficients give indications about the recovery and purification of terpenes and terpenoids from ionic liquid solutions. Presenting a strong innovative character, COSMO-RS was evaluated for the description of the selectivities and capacities, showing to be a useful tool for the screening of ionic liquids in order to find suitable candidates for terpenes and terpenoids extraction, and separation. COSMO-RS predictions show that in order to achieve the maximum separation efficiency, polar anions should be used such as bis(2,4,4-trimethylpentyl)phosphinate or acetate, whereas high capacities require nonpolar cations such as phosphonium.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Looking for a better knowledge concerning water and ionic liquids (ILs) interactions, a systematic study of the activity coefficients of water in pyridinium, pyrrolidinium and piperidinium-based ILs at 298.2 K is here presented based on water activity measurements. Additionally, the study of the structural effects of the pyridinium-based cation is also pursued. The results show that non-aromatic ILs are interacting more with water than aromatic ones, and among the ortho, meta and para isomers of 1-butyl-methylpyridinium chloride, the ortho position confers a more hydrophilic character to that specific IL. The physicalchemistry of the solutions was interpreted based on dissociation constants, natural bond orbitals and excess enthalpies providing a sound basis for the interpretation of the experimental observations. These results show that hydrogen bonding controls the behavior of these systems, being the anion-water one of the most relevant interactions, but modulated by the anionecation interactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Herein, solubility experimental data for six monosaccharides, viz. D-(+)-glucose, D-(+)-mannose, D-(-)-fructose, D-(+)-galactose, D-(+)-xylose and L-(+)-arabinose, in four ionic liquids (ILs), at temperatures ranging from 288.2 to 348.2 K, were obtained aimed at gathering a better understanding of their solvation ability and molecular-level mechanisms which rule the dissolution process. To ascertain the chemical features that enhance the solubility of monosaccharides, ILs composed of dialkylimidazolium or tetra-alkylphosphonium cations combined with the dicyanamide, dimethylphosphate or chloride anions were investigated. It was found that the ranking of the solubility of monosaccharides depends on the IL; yet, D-(+)-xylose is always the most soluble while D-(-)-fructose is the least soluble monosaccharide. The results obtained show that both the IL cation and the anion play a major role in the solubility of monosaccharides. Finally, from the determination of the respective thermodynamic properties of solution, it was found that enthalpic contributions are dominant in the solubilization process. However, the observed differences in the solubilities of monosaccharides in 1-butyl-3-methylimidazolium dicyanamide are ruled by a change in the entropy of solution.