912 resultados para interpretative flexibility
Resumo:
From Arithmetic to Algebra. Changes in the skills in comprehensive school over 20 years. In recent decades we have emphasized the understanding of calculation in mathematics teaching. Many studies have found that better understanding helps to apply skills in new conditions and that the ability to think on an abstract level increases the transfer to new contexts. In my research I take into consideration competence as a matrix where content is in a horizontal line and levels of thinking are in a vertical line. The know-how is intellectual and strategic flexibility and understanding. The resources and limitations of memory have their effects on learning in different ways in different phases. Therefore both flexible conceptual thinking and automatization must be considered in learning. The research questions that I examine are what kind of changes have occurred in mathematical skills in comprehensive school over the last 20 years and what kind of conceptual thinking is demonstrated by students in this decade. The study consists of two parts. The first part is a statistical analysis of the mathematical skills and their changes over the last 20 years in comprehensive school. In the test the pupils did not use calculators. The second part is a qualitative analysis of the conceptual thinking of pupils in comprehensive school in this decade. The study shows significant differences in algebra and in some parts of arithmetic. The largest differences were detected in the calculation skills of fractions. In the 1980s two out of three pupils were able to complete tasks with fractions, but in the 2000s only one out of three pupils were able to do the same tasks. Also remarkable is that out of the students who could complete the tasks with fractions, only one out of three pupils was on the conceptual level in his/her thinking. This means that about 10% of pupils are able to understand the algebraic expression, which has the same isomorphic structure as the arithmetical expression. This finding is important because the ability to think innovatively is created when learning the basic concepts. Keywords: arithmetic, algebra, competence
Resumo:
BACKGROUND OR CONTEXT Laboratories provide the physical spaces for engineering students to connect with theory and have a personal hands-on learning experience. Learning space design and development is well established in many universities however laboratories are often not part of that movement. While active, collaborative and group learning pedagogies are all key words in relation to these new spaces the concepts have always been central to laboratory based learning. The opportunity to build on and strengthen good practice in laboratories is immense. In the 2001 review “Universities in Crisis” many references are made to the decline of laboratories. One such comment in the review was made by Professor Ian Chubb (AVCC), who in 2013, as Chief Scientist for Australia, identifies the national concern about STEM education and presents a strategic plan to address the challenges ahead. What has been achieved and changed in engineering teaching and research laboratories in this time? PURPOSE OR GOAL A large number of universities in Australia and New Zealand own laboratory and other infrastructure designed well for the era they were built but now showing signs of their age, unable to meet the needs of today’s students, limiting the effectiveness of learning outcomes and presenting very low utilisation rates. This paper will present a model for new learning space design that improves student experience and engagement, supporting academic aims and significantly raising the space utilisation rate. APPROACH A new approach in laboratory teaching and research including new management has been adopted by the engineering disciplines at QUT. Flexibility is an underpinning principle along with the modularisation of fixed teaching and learning equipment, high utilisation of spaces and dynamic pedagogical approaches. The revitalised laboratories and workshop facilities are used primarily for the engineering disciplines and increasingly for integrated use across many disciplines in the STEM context. The new approach was built upon a base of an integrated faculty structure from 2005 and realised in 2010 as an associated development with the new Science and Engineering Centre (SEC). Evaluation through student feedback surveys for practical activities, utilisation rate statistics and uptake by academic and technical staff indicate a very positive outcome. DISCUSSION Resulting from this implementation has been increased satisfaction by students, creation of social learning and connecting space and an environment that meets the needs and challenges of active, collaborative and group learning pedagogies. Academic staff are supported, technical operations are efficient and laboratories are effectively utilised. RECOMMENDATIONS/IMPLICATIONS/CONCLUSION Future opportunities for continuous improvement are evident in using the student feedback to rectify faults and improve equipment, environment and process. The model is easily articulated and visible to other interested parties to contribute to sector wide development of learning spaces.
Resumo:
Random breath testing (RBT) was introduced in South Australia in 1981 with the intention of reducing the incidence of accidents involving alcohol. In April 1985, a Select Committee of the Upper House which had been established to “review the operation of random breath testing in this State and any other associated matters and report accordingly” presented its report. After consideration of this report, the Government introduced extensive amendments to those sections of the Motor Vehicles Act (MVA) and Road Traffic Act (RTA) which deal with RBT and drink driving penalties. The amended section 47da of the RTA requires that: “(5) The Minister shall cause a report to be prepared within three months after the end of each calendar year on the operation and effectiveness of this section and related sections during that calendar year. (6) The Minister shall, within 12 sitting days after receipt of a report under subsection (5), cause copies of the report to be laid before each House of Parliament.” This is the first such report. Whilst it deals with RBT over a full year, the changed procedures and improved flexibility allowed by the revision to the RTA were only introduced late in 1985 and then only to the extent that the existing resources would allow.
Resumo:
The Community Aspirations Program in Education (CAP-ED) was delivered by CQUniversity’s Office of Indigenous Engagement to increase Aboriginal and Torres Strait Islander student participation in higher education. CAP-ED was developed through scoping studies of six individual communities within the CQuniversity footprint, including a designated Aboriginal and Torres Strait Islander community and rural and regional communities. The scoping process included developing community profiles and extensive consultation with Traditional Owners, Elders, community members and key stakeholders. This process proved to be an essential component of CAP-ED’s success, resulting in Indigenous participation in the program’s networking lunches, through to the delivery of information and workshop sessions. Moreover, it witnessed engagement with people in communities as partners in the program’s delivery and co-presenters in workshops and other events. The CAP-ED workshops focus on identity, culture, aspirations and assist participants to see that they have the potential to participate in higher education. The other essential components of the program’s success have included enabling people to ‘see what they can be’, offering opportunities for people to ask questions, voice honest concerns, and build confidence. The flexibility of delivery was paramount in accommodating the varying needs of each community and the differences in cultural protocols and community approaches, while the face to face engagement between knowledgeable and skilled staff and community members proved to be vital. Over the life of the project, CAP-ED has developed into a broad based strategy that has successfully matched community needs and university based responses through the process of community engagement.
Resumo:
In this paper, we consider the optimization of the cross-section profile of a cantilever beam under deformation-dependent loads. Such loads are encountered in plants and trees, cereal crop plants such as wheat and corn in particular. The wind loads acting on the grain-bearing spike of a wheat stalk vary with the orientation of the spike as the stalk bends; this bending and the ensuing change in orientation depend on the deformation of the plant under the same load.The uprooting of the wheat stalks under wind loads is an unresolved problem in genetically modified dwarf wheat stalks. Although it was thought that the dwarf varieties would acquire increased resistance to uprooting, it was found that the dwarf wheat plants selectively decreased the Young's modulus in order to be compliant. The motivation of this study is to investigate why wheat plants prefer compliant stems. We analyze this by seeking an optimal shape of the wheat plant's stem, which is modeled as a cantilever beam, by taking the large deflection of the stem into account with the help of co-rotational finite element beam modeling. The criteria considered here include minimum moment at the fixed ground support, adequate stiffness and strength, and the volume of material. The result reported here is an example of flexibility, rather than stiffness, leading to increased strength.
Resumo:
A recent work obtained closed-form solutions to the.problem of optimally grouping a multi-item inventory into subgroups with a common order cycle per group, when the distribution by value of the inventory could be described by a Pareto function. This paper studies the sensitivity of the optimal subgroup boundaries so obtained. Closed-form expressions have been developed to find intervals for the subgroup boundaries for any given level of suboptimality. Graphs have been provided to aid the user in selecting a cost-effective level of aggregation and choosing appropriate subgroup boundaries for a whole range of inventory distributions. The results of sensitivity analyses demonstrate the availability of flexibility in the partition boundaries and the cost-effectiveness of any stock control system through three groups, and thus also provide a theoretical support to the intuitive ABC system of classifying the items.
Resumo:
This project has delivered outcomes that address major agronomic and crop protection issues closely linked to the profitability and sustainability of cotton production enterprises in CQ. From an agronomic perspective, the CQ environment was always though to support economically viable cotton production in a wide sowing window from the middle of September to early January prior to this research. The ideal positioning of Bollgard II varieties in the CQ planting window was, therefore, critical to the future of the local cotton industry because growers needed baseline information to determine how best to take advantage of the higher yield potential offered by the Bt cotton technology, optimise irrigation water use and fibre characteristics. The project’s outputs include a number of key agronomic findings. Over three growing seasons, Bollgard II crop planted in the traditional sowing window from the middle of September to the end of October consistently produced the highest yields. The project delivers a clear and quantitative assessment of the impacts of planting outside the traditional cropping window - a yield penalty of between 1-4 bales/ha for November and December planted cotton. Whilst yield penalties associated with December-planted crops are clearly linked to declining heat units in the second half of the crop and a cool finish, those associated with November-planted cotton are not consistent with the theoretical yield potential for this sowing date. Further research to understand and minimize the physiological constraints on November-planted cotton would give CQ cotton growers far greater flexibility to develop mixed/double/rotation cropping farming systems that are relevant to the rapidly evolving nature of Agricultural production in Australia. The equivalence of cultivar types with clearly distinguishable, genetically based growth habits, demonstrated in this project, gives growers important information for making varietal choices. The entomological outcomes of this project represent strategic and tactical tools that are highly relevant to the viability and profitability of the cotton industry in Australia. The future of the cotton industry is inextricably linked to the survival and efficacy of GM cotton. Research done in the Callide irrigation area demonstrates the unquestionable potential for development of alternative and highly effective resistance management strategies for Bollgard II using novel technologies and strategies based on products such as Magnet®. Magnet® and similar technologies will be increasingly important in strategies to preserve the shelf life and efficacy of current and future generations of GM technology. However, more research will be required to address logistical and operational issues related to these new technologies before they can be fully exploited in commercial production systems. From an economic perspective, SLW is the sleeping giant in terms of insect nemeses of cotton, particularly from the standpoint of climate change and an increasingly warmer production environment. An effective sampling and management strategy for SLW which has been delivered by this project will go a long way towards minimising production costs in an environment characterised by rapidly rising input costs. SLW has the potential to permanently debilitate the national cotton industry by influencing market sentiment and quality perceptions. Field validation of the SLW population sampling models and management options in the Dawson irrigation area cotton and southern Queensland during 2006-07 documents the robustness of the entomological research outcomes achieved through this project.
Resumo:
The introduction of glyphosate tolerant cotton has significantly improved the flexibility and management of a number of problem weeds in cotton systems. However, reliance on glyphosate poses risks to the industry in term of glyphosate resistance and species shift. The aims of this project were to identify these risks, and determine strategies to prevent and mitigate the potential for resistance evolution. Field surveys identified fleabane as the most common weed now in both irrigated and dryland system. Sowthistle has also increased in prevalence, and bladder ketmia and peachvine remained common. The continued reliance on glyphosate has favoured small seeded, and glyphosate tolerant species. Fleabane is both of these, with populations confirmed resistant in grains systems in Queensland and NSW. When species were assessed for their resistance risk, fleabane, liverseed grass, feathertop Rhodes grass, sowthistle and barnyard grass were determined to have high risk ratings. Management practices were also determined to rely heavily on glyphosate and therefore be high risk in summer fallows, and dryland glyphosate tolerant and conventional cotton. Situations were these high risk species are present in high risk cropping phases need particular attention. The confirmation of a glyphosate resistance barnyard grass population in a dryland glyphosate tolerant cotton system means resistance is now a reality for the cotton industry. However, experiments have shown that resistant populations can be managed with other herbicide options currently available. However, the options for fleabane management in cotton are still limited. Although some selective residual herbicides are showing promise, the majority of fleabane control tactics can only be used in other phases of the cotton rotation. An online glyphosate resistance tool has been developed. This tool allows growers to assess their individual glyphosate resistance risks, and how they can adjust their practices to reduce their risks. It also provides researchers with current information on weed species present and practices used across the industry. This tool will be extremely useful in tailoring future research and extension efforts. Simulations from the expanded glyphosate resistance model have shown that glyphosate resistance can be prevented and managed in glyphosate-tolerant cotton farming systems. However, for strategies to be successful, some effort is required. Simulations have shown the importance of controlling survivors of glyphosate applications, using effective glyphosate alternatives in fallows, and combining several effective glyphosate alternatives in crop, and these are the key to the prevention and management of glyphosate resistance.
Resumo:
This manual is a guide to establishing a set of operations to achieve high grade results in product quality and recovery, flexibility, innovation, cost, and competitiveness. The manual outlines: - economic and feasible technologies for increasing recovery and reducing avoidable loss during processing, from the log to the finished board, and - mechanisms that allow production value to be optimised in different sized mills. Part 2 includes sections 8 to 17: Air drying, pre-drying, reconditioning, controlled final drying, dry milling, storage, information assessment, drying quality assessment, moisture content monitoring, glossary. Part 1 Link: http://era.deedi.qld.gov.au/3138 Covers sections 1 to 7: Drying overview and strategy, coupe, log yard, green mill, green pack, bioprotection, rack timber.
Resumo:
This manual is a guide to establishing a set of operations to achieve high grade results in product quality and recovery, flexibility, innovation, cost, and competitiveness. The manual outlines: - economic and feasible technologies for increasing recovery and reducing avoidable loss during processing, from the log to the finished board, and - mechanisms that allow production value to be optimised in different sized mills. Part 1 covers sections 1 to 7: Drying overview and strategy, coupe, log yard, green mill, green pack, bioprotection, rack timber. Part 2 Link: http://era.deedi.qld.gov.au/3137 Includes sections 8 to 17: Air drying, pre-drying, reconditioning, controlled final drying, dry milling, storage, information assessment, drying quality assessment, moisture content monitoring, glossary.
Resumo:
Owing to the structural flexibility, uncomplicated processing and manufacturing capabilities, plasma polymers are the subject of active academic as well as industrial research. Polymer thin films prepared from non-synthetic monomers combine desirable optical and physical properties with biocompatibility and environmental sustainability. However, the ultimate expediency and implementation of such materials will dependent on the stability of these properties under varied environmental conditions. Polyterpenol thin films were manufactured at different deposition powers. Under ambient conditions, the bulk of ageing occurred within first 150h after deposition and was attributed to oxidation and volumetric relaxation. Films observed for further 12 months showed no significant changes in thickness or refractive index. Thermal degradation behaviour indicated thermal stability increased for the films manufactured at higher RF powers. Annealing the films to 405°C resulted in full degradation, with retention between 0.29 and 0.99%, indicating films' potential as sacrificial material.
Resumo:
After more than twenty years of basic and applied research, the use of nanotechnology in the design and manufacture of nanoscale materials is rapidly increasing, particularly in commercial applications that span from electronics across renewable energy areas, and biomedical devices. Novel polymers are attracting significant attention for they promise to provide a low−cost high−performance alternative to existing materials. Furthermore, these polymers have the potential to overcome limitations imposed by currently available materials thus enabling the development of new technologies and applications that are currently beyond our reach. This work focuses on the development of a range of new low−cost environmentally−friendly polymer materials for applications in areas of organic (flexible) electronics, optics, and biomaterials. The choice of the monomer reflects the environmentally−conscious focus of this project. Terpinen−4−ol is a major constituent of Australian grown Melaleuca alternifolia (tea tree) oil, attributed with the oil's antimicrobial and anti−inflammatory properties. Plasma polymerisation was chosen as a deposition technique for it requires minimal use of harmful chemicals and produces no hazardous by−products. Polymer thin films were fabricated under varied process conditions to attain materials with distinct physico−chemical, optoelectrical, biological and degradation characteristics. The resultant materials, named polyterpenol, were extensively characterised using a number of well−accepted and novel techniques, and their fundamental properties were defined. Polyterpenol films were demonstrated to be hydrocarbon rich, with variable content of oxygen moieties, primarily in the form of hydroxyl and carboxyl functionalities. The level of preservation of original monomer functionality was shown to be strongly dependent on the deposition energy, with higher applied power increasing the molecular fragmentation and substrate temperature. Polyterpenol water contact angle contact angle increased from 62.7° for the 10 W samples to 76.3° for the films deposited at 100 W. Polymers were determined to resist solubilisation by water, due to the extensive intermolecular and intramolecular hydrogen bonds present, and other solvents commonly employed in electronics and biomedical processing. Independent of deposition power, the surface topography of the polymers was shown to be smooth (Rq <0.5 nm), uniform and defect free. Hardness of polyterpenol coatings increased from 0.33 GPa for 10 W to 0.51 GPa for 100 W (at 500 μN load). Coatings deposited at higher input RF powers showed less mechanical deformation during nanoscratch testing, with no considerable damage, cracking or delamination observed. Independent of the substrate, the quality of film adhesion improved with RF power, suggesting these coatings are likely to be more stable and less susceptible to wear. Independent of fabrication conditions, polyterpenol thin films were optically transparent, with refractive index approximating that of glass. Refractive index increased slightly with deposition power, from 1.54 (10 W) to 1.56 (100 W) at 500 nm. The optical band gap values declined with increasing power, from 2.95 eV to 2.64 eV, placing the material within the range for semiconductors. Introduction of iodine impurity reduced the band gap of polyterpenol, from 2.8 eV to 1.64 eV, by extending the density of states more into the visible region of the electromagnetic spectrum. Doping decreased the transparency and increased the refractive index from 1.54 to 1.70 (at 500 nm). At optical frequencies, the real part of permittivity (k) was determined to be between 2.34 and 2.65, indicating a potential low-k material. These permittivity values were confirmed at microwave frequencies, where permittivity increased with input RF energy – from 2.32 to 2.53 (at 10 GHz ) and from 2.65 to 2.83 (at 20 GHz). At low frequencies, the dielectric constant was determined from current−voltage characteristics of Al−polyterpenol−Al devices. At frequencies below 100 kHz, the dielectric constant varied with RF power, from 3.86 to 4.42 at 1 kHz. For all samples, the resistivity was in order of 10⁸−10⁹ _m (at 6 V), confirming the insulating nature of polyterpenol material. In situ iodine doping was demonstrated to increase the conductivity of polyterpenol, from 5.05 × 10⁻⁸ S/cm to 1.20 × 10⁻⁶ S/cm (at 20 V). Exposed to ambient conditions over extended period of time, polyterpenol thin films were demonstrated to be optically, physically and chemically stable. The bulk of ageing occurred within first 150 h after deposition and was attributed to oxidation and volumetric relaxation. Thermal ageing studies indicated thermal stability increased for the films manufactured at higher RF powers, with degradation onset temperature associated with weight loss shifting from 150 ºC to 205 ºC for 10 W and 100 W polyterpenol, respectively. Annealing the films to 405 °C resulted in full dissociation of the polymer, with minimal residue. Given the outcomes of the fundamental characterisation, a number of potential applications for polyterpenol have been identified. Flexibility, tunable permittivity and loss tangent properties of polyterpenol suggest the material can be used as an insulating layer in plastic electronics. Implementation of polyterpenol as a surface modification of the gate insulator in pentacene-based Field Effect Transistor resulted in significant improvements, shifting the threshold voltage from + 20 V to –3 V, enhancing the effective mobility from 0.012 to 0.021 cm²/Vs, and improving the switching property of the device from 10⁷ to 10⁴. Polyterpenol was demonstrated to have a hole transport electron blocking property, with potential applications in many organic devices, such as organic light emitting diodes. Encapsulation of biomedical devices is also proposed, given that under favourable conditions, the original chemical and biological functionality of terpinen−4−ol molecule can be preserved. Films deposited at low RF power were shown to successfully prevent adhesion and retention of several important human pathogens, including P. aeruginosa, S. aureus, and S. epidermidis, whereas films deposited at higher RF power promoted bacterial cell adhesion and biofilm formation. Preliminary investigations into in vitro biocompatibility of polyterpenol demonstrated the coating to be non−toxic for several types of eukaryotic cells, including Balb/c mice macrophage and human monocyte type (HTP−1 non-adherent) cells. Applied to magnesium substrates, polyterpenol encapsulating layer significantly slowed down in vitro biodegradation of the metal, thus increasing the viability and growth of HTP−1 cells. Recently, applied to varied nanostructured titanium surfaces, polyterpenol thin films successfully reduced attachment, growth, and viability of P. aeruginosa and S. aureus.
Resumo:
The availability and quality of irrigation water has become an issue limiting productivity in many Australian vegetable regions. Production is also under competitive pressure from supply chain forces. Producers look to new technologies, including changing irrigation infrastructure, exploring new water sources, and more complex irrigation management, to survive these stresses. Often there is little objective information investigating which improvements could improve outcomes for vegetable producers, and external communities (e.g. meeting NRM targets). This has led to investment in inappropriate technologies, and costly repetition of errors, as business independently discover the worth of technologies by personal experience. In our project, we investigated technology improvements for vegetable irrigation. Through engagement with industry and other researchers, we identified technologies most applicable to growers, particularly those that addressed priority issues. We developed analytical tools for ‘what if’ scenario testing of technologies. We conducted nine detailed experiments in the Lockyer Valley and Riverina vegetable growing districts, as well as case studies on grower properties in southern Queensland. We investigated root zone monitoring tools (FullStop™ wetting front detectors and Soil Solution Extraction Tubes - SSET), drip system layout, fertigation equipment, and altering planting arrangements. Our project team developed and validated models for broccoli, sweet corn, green beans and lettuce, and spreadsheets for evaluating economic risks associated with new technologies. We presented project outcomes at over 100 extension events, including irrigation showcases, conferences, field days, farm walks and workshops. The FullStops™ were excellent for monitoring root zone conditions (EC, nitrate levels), and managing irrigation with poor quality water. They were easier to interpret than the SSET. The SSET were simpler to install, but required wet soil to be reliable. SSET were an option for monitoring deeper soil zones, unsuitable for FullStop™ installations. Because these root zone tools require expertise, and are labour intensive, we recommend they be used to address specific problems, or as a periodic auditing strategy, not for routine monitoring. In our research, we routinely found high residual N in horticultural soils, with subsequently little crop yield response to additional nitrogen fertiliser. With improved irrigation efficiency (and less leaching), it may be timely to re-examine nitrogen budgets and recommendations for vegetable crops. Where the drip irrigation tube was located close to the crop row (i.e. within 5-8 cm), management of irrigation was easier. It improved nitrogen uptake, water use efficiency, and reduced the risk of poor crop performance through moisture stress, particularly in the early crop establishment phases. Close proximity of the drip tube to the crop row gives the producer more options for managing salty water, and more flexibility in taking risks with forecast rain. In many vegetable crops, proximate drip systems may not be cost-effective. The next best alternative is to push crop rows closer to the drip tube (leading to an asymmetric row structure). The vegetable crop models are good at predicting crop phenology (development stages, time to harvest), input use (water, fertiliser), environmental impacts (nutrient, salt movement) and total yields. The two immediate applications for the models are understanding/predicting/manipulating harvest dates and nitrogen movements in vegetable cropping systems. From the economic tools, the major influences on accumulated profit are price and yield. In doing ‘what if’ analyses, it is very important to be as accurate as possible in ascertaining what the assumed yield and price ranges are. In most vegetable production systems, lowering the required inputs (e.g. irrigation requirement, fertiliser requirement) is unlikely to have a major influence on accumulated profit. However, if a resource is constraining (e.g. available irrigation water), it is usually most profitable to maximise return per unit of that resource.
Resumo:
Amongst various methods to attain sound antibacterial and antifouling properties, surface modification of biomaterials combines efficiency, processing flexibility, and most importantly, the ability to preserve favourable bulk properties, such as mechanical strength and chemical inertness. This chapter will first briefly discuss key parameters by which the biomaterial surface can be described, namely surface chemistry and morphology, and their individual and combined contributions to cell-surface interactions. More emphasis will be placed on surface morphology as the area of much debate. The chapter will then describe a range of available methodologies for surface modification, with plasma-assisted modification as one of the foci.
Resumo:
The potato virus A (PVA) genome linked protein (VPg) is a multifunctional protein that takes part in vital infection cycle events such as replication and movement of the virus from cell to cell. VPg is attached to the 5´ end of the genome and is carried in the tip structure of the filamentous virus particle. VPg is also the last protein to be cleaved from the polyprotein. VPg interacts with several viral and host proteins and is phosphorylated at several positions. These features indicate a central role in virus epidemiology and a requirement for an efficient but flexible mechanism for switching between different functions. -- This study examines some of the key VPg functions in more detail. Mutations in the positively charged region from Ala38 to Lys44 affected the NTP binding, uridylylation, and in vitro translation inhibition activities of VPg, whereas in vivo translation inhibition was not affected. Some of the data generated in this study implicated the structural flexibility of the protein in functional activities. VPg lacks a rigid structure, which could allow it to adapt conformationally to different functions as needed. A major finding of this study is that PVA VPg belongs to the class of ´intrinsically disordered proteins´ (IDPs). IDPs are a novel protein class that has helped to explain the observed lack of structure. The existence of IDPs clearly shows that proteins can be functional and adapt a native fold without a rigid structure. Evidence for the intrinsic disorder of VPg was provided by CD spectroscopy, NMR, fluorescence spectroscopy, bioinformatic analysis, and limited proteolytic digestion. The structure of VPg resembles that of a molten globule-type protein and has a hydrophobic core domain. Approximately 50% of the protein is disordered and an α-helical stabilization of these regions has been hypothesized. Surprisingly, VPg structure was stabilized in the presence of anionic lipid vesicles. The stabilization was accompanied by a change in VPg structure and major morphological modifications of the vesicles, including a pronounced increase in the size and appearance of pore or plaque like formations on the vesicle surface. The most likely scenario seems to be an α-helical stabilization of VPg which induces formation of a pore or channel-like structure on the vesicle surface. The size increase is probably due to fusion or swelling of the vesicles. The latter hypothesis is supported by the evident disruption of the vesicles after prolonged incubation with VPg. A model describing the results is presented and discussed in relation to other known properties of the protein.