806 resultados para intelligent decision support systems
Resumo:
The purpose of this research is to draw up a clear construction of an anticipatory communicative decision-making process and a successful implementation of a Bayesian application that can be used as an anticipatory communicative decision-making support system. This study is a decision-oriented and constructive research project, and it includes examples of simulated situations. As a basis for further methodological discussion about different approaches to management research, in this research, a decision-oriented approach is used, which is based on mathematics and logic, and it is intended to develop problem solving methods. The approach is theoretical and characteristic of normative management science research. Also, the approach of this study is constructive. An essential part of the constructive approach is to tie the problem to its solution with theoretical knowledge. Firstly, the basic definitions and behaviours of an anticipatory management and managerial communication are provided. These descriptions include discussions of the research environment and formed management processes. These issues define and explain the background to further research. Secondly, it is processed to managerial communication and anticipatory decision-making based on preparation, problem solution, and solution search, which are also related to risk management analysis. After that, a solution to the decision-making support application is formed, using four different Bayesian methods, as follows: the Bayesian network, the influence diagram, the qualitative probabilistic network, and the time critical dynamic network. The purpose of the discussion is not to discuss different theories but to explain the theories which are being implemented. Finally, an application of Bayesian networks to the research problem is presented. The usefulness of the prepared model in examining a problem and the represented results of research is shown. The theoretical contribution includes definitions and a model of anticipatory decision-making. The main theoretical contribution of this study has been to develop a process for anticipatory decision-making that includes management with communication, problem-solving, and the improvement of knowledge. The practical contribution includes a Bayesian Decision Support Model, which is based on Bayesian influenced diagrams. The main contributions of this research are two developed processes, one for anticipatory decision-making, and the other to produce a model of a Bayesian network for anticipatory decision-making. In summary, this research contributes to decision-making support by being one of the few publicly available academic descriptions of the anticipatory decision support system, by representing a Bayesian model that is grounded on firm theoretical discussion, by publishing algorithms suitable for decision-making support, and by defining the idea of anticipatory decision-making for a parallel version. Finally, according to the results of research, an analysis of anticipatory management for planned decision-making is presented, which is based on observation of environment, analysis of weak signals, and alternatives to creative problem solving and communication.
Resumo:
Unmanned aerial vehicles (UAVs) have the potential to carry resources in support of search and prosecute operations. Often to completely prosecute a target, UAVs may have to simultaneously attack the target with various resources with different capacities. However, the UAVs are capable of carrying only limited resources in small quantities, hence, a group of UAVs (coalition) needs to be assigned that satisfies the target resource requirement. The assigned coalition must be such that it minimizes the target prosecution delay and the size of the coalition. The problem of forming coalitions is computationally intensive due to the combinatorial nature of the problem, but for real-time applications computationally cheap solutions are required. In this paper, we propose decentralized sub-optimal (polynomial time) and decentralized optimal coalition formation algorithms that generate coalitions for a single target with low computational complexity. We compare the performance of the proposed algorithms to that of a global optimal solution for which we need to solve a centralized combinatorial optimization problem. This problem is computationally intensive because the solution has to (a) provide a coalition for each target, (b) design a sequence in which targets need to be prosecuted, and (c) take into account reduction of UAV resources with usage. To solve this problem we use the Particle Swarm Optimization (PSO) technique. Through simulations, we study the performance of the proposed algorithms in terms of mission performance, complexity of the algorithms and the time taken to form the coalition. The simulation results show that the solution provided by the proposed algorithms is close to the global optimal solution and requires far less computational resources.
Resumo:
Most pattern mining methods yield a large number of frequent patterns, and isolating a small relevant subset of patterns is a challenging problem of current interest. In this paper, we address this problem in the context of discovering frequent episodes from symbolic time-series data. Motivated by the Minimum Description Length principle, we formulate the problem of selecting relevant subset of patterns as one of searching for a subset of patterns that achieves best data compression. We present algorithms for discovering small sets of relevant non-redundant episodes that achieve good data compression. The algorithms employ a novel encoding scheme and use serial episodes with inter-event constraints as the patterns. We present extensive simulation studies with both synthetic and real data, comparing our method with the existing schemes such as GoKrimp and SQS. We also demonstrate the effectiveness of these algorithms on event sequences from a composable conveyor system; this system represents a new application area where use of frequent patterns for compressing the event sequence is likely to be important for decision support and control.
Resumo:
This publication introduces the methods and results of a research project that has developed a set of decision-support tools to identify places and sets of conditions for which a particular target aquaculture technology is considered feasible and therefore good to promote. The tools also identify the nature of constraints to aquaculture development and thereby shed light on appropriate interventions to realize the potential of the target areas. The project results will be useful for policy planners and decision makers in national, regional and local governments and development funding agencies, aquaculture extension workers in regional and local governments, and researchers in aquaculture systems and rural livelihoods. (Document contains 40 pages)
Resumo:
The implementation of various types of marine protected areas is one of several management tools available for conserving representative examples of the biological diversity within marine ecosystems in general and National Marine Sanctuaries in particular. However, deciding where and how many sites to establish within a given area is frequently hampered by incomplete knowledge of the distribution of organisms and an understanding of the potential tradeoffs that would allow planners to address frequently competing interests in an objective manner. Fortunately, this is beginning to change. Recent studies on the continental shelf of the northeastern United States suggest that substrate and water mass characteristics are highly correlated with the composition of benthic communities and may therefore, serve as proxies for the distribution of biological biodiversity. A detailed geo-referenced interpretative map of major sediment types within Stellwagen Bank National Marine Sanctuary (SBNMS) has recently been developed, and computer-aided decision support tools have reached new levels of sophistication. We demonstrate the use of simulated annealing, a type of mathematical optimization, to identify suites of potential conservation sites within SBNMS that equally represent 1) all major sediment types and 2) derived habitat types based on both sediment and depth in the smallest amount of space. The Sanctuary was divided into 3610 0.5 min2 sampling units. Simulations incorporated constraints on the physical dispersion of sampling units to varying degrees such that solutions included between one and four site clusters. Target representation goals were set at 5, 10, 15, 20, and 25 percent of each sediment type, and 10 and 20 percent of each habitat type. Simulations consisted of 100 runs, from which we identified the best solution (i.e., smallest total area) and four nearoptimal alternates. We also plotted total instances in which each sampling unit occurred in solution sets of the 100 runs as a means of gauging the variety of spatial configurations available under each scenario. Results suggested that the total combined area needed to represent each of the sediment types in equal proportions was equal to the percent representation level sought. Slightly larger areas were required to represent all habitat types at the same representation levels. Total boundary length increased in direct proportion to the number of sites at all levels of representation for simulations involving sediment and habitat classes, but increased more rapidly with number of sites at higher representation levels. There were a large number of alternate spatial configurations at all representation levels, although generally fewer among one and two versus three- and four-site solutions. These differences were less pronounced among simulations targeting habitat representation, suggesting that a similar degree of flexibility is inherent in the spatial arrangement of potential protected area systems containing one versus several sites for similar levels of habitat representation. We attribute these results to the distribution of sediment and depth zones within the Sanctuary, and to the fact that even levels of representation were sought in each scenario. (PDF contains 33 pages.)
Resumo:
4 p.
Resumo:
Migrating to cloud computing is one of the current enterprise challenges. This technology provides a new paradigm based on "on-demand payment" for information and communication technologies. In this sense, the small and medium enterprise is supposed to be the most interested, since initial investments are avoided and the technology allows gradual implementation. However, even if the characteristics and capacities have been widely discussed, entry into the cloud is still lacking in terms of practical, real frameworks. This paper aims at filling this gap, presenting a real tool already implemented and tested, which can be used as a cloud computing adoption decision tool. This tool uses diagnosis based on specific questions to gather the required information and subsequently provide the user with valuable information to deploy the business within the cloud, specifically in the form of Software as a Service (SaaS) solutions. This information allows the decision makers to generate their particular Cloud Road. A pilot study has been carried out with enterprises at a local level with a two-fold objective: To ascertain the degree of knowledge on cloud computing and to identify the most interesting business areas and their related tools for this technology. As expected, the results show high interest and low knowledge on this subject and the tool presented aims to readdress this mismatch, insofar as possible. Copyright: © 2015 Bildosola et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Resumo:
Marine protected areas (MPAs) represent a form of spatial management, and geospatial information on living marine resources and associated habitat is extremely important to support best management practices in a spatially discrete MPA. Benthic habitat maps provide georeferenced information on the geomorphic structure and biological cover types in the marine environment. This information supports an enhanced understanding of ecosystem function and species habitat utilization patterns. Benthic habitat maps are most useful for marine management and spatial planning purposes when they are created at a scale that is relevant to management actions. We sought to improve the resolution of existing benthic habitat maps created during a regional mapping effort in Hawai`i. Our results complemented these existing regional maps and provided more detailed, finer-scale habitat maps for a network of MPAs in West Hawai`i. The map products created during this study allow local planners and managers to extract information at a spatial scale relevant to the discrete management units, and appropriate for local marine management efforts on the Kona Coast. The resultant benthic habitat maps were integrated in a geographic information system (GIS) that also included aerial imagery, underwater video, MPA regulations, summarized ecological data and other relevant and spatially explicit information. The integration of the benthic habitat maps with additional “value added” geospatial information into a dynamic GIS provide a decision support tool with pertinent marine resource information available in one central location and support the application of a spatial approach to the management of marine resources. Further, this work can serve as a case study to demonstrate the integration of remote sensing products and GIS tools at a fine spatial scale relevant to local-level marine spatial planning and management efforts.
Resumo:
Reducing energy consumption is a major challenge for "energy-intensive" industries such as papermaking. A commercially viable energy saving solution is to employ data-based optimization techniques to obtain a set of "optimized" operational settings that satisfy certain performance indices. The difficulties of this are: 1) the problems of this type are inherently multicriteria in the sense that improving one performance index might result in compromising the other important measures; 2) practical systems often exhibit unknown complex dynamics and several interconnections which make the modeling task difficult; and 3) as the models are acquired from the existing historical data, they are valid only locally and extrapolations incorporate risk of increasing process variability. To overcome these difficulties, this paper presents a new decision support system for robust multiobjective optimization of interconnected processes. The plant is first divided into serially connected units to model the process, product quality, energy consumption, and corresponding uncertainty measures. Then multiobjective gradient descent algorithm is used to solve the problem in line with user's preference information. Finally, the optimization results are visualized for analysis and decision making. In practice, if further iterations of the optimization algorithm are considered, validity of the local models must be checked prior to proceeding to further iterations. The method is implemented by a MATLAB-based interactive tool DataExplorer supporting a range of data analysis, modeling, and multiobjective optimization techniques. The proposed approach was tested in two U.K.-based commercial paper mills where the aim was reducing steam consumption and increasing productivity while maintaining the product quality by optimization of vacuum pressures in forming and press sections. The experimental results demonstrate the effectiveness of the method.
Resumo:
Traditionally, production scheduling has been viewed as a problem-solving task that involves a single problem - generation of a suitable schedule. This paper presents an alternative model in which individual difficulties are viewed as problems, and the task is to maintain a suitable schedule by resolving as many of these problems as possible. Decision support software is described that has facilities for defining policies to handle numerous minor problems and complete problem-solving strategies to deal with major problems. The paper then discusses the potential for this style of decision support to improve the performance of human schedulers. © 1995.
Resumo:
Reducing energy consumption is a major challenge for energy-intensive industries such as papermaking. A commercially viable energy saving solution is to employ data-based optimization techniques to obtain a set of optimized operational settings that satisfy certain performance indices. The difficulties of this are: 1) the problems of this type are inherently multicriteria in the sense that improving one performance index might result in compromising the other important measures; 2) practical systems often exhibit unknown complex dynamics and several interconnections which make the modeling task difficult; and 3) as the models are acquired from the existing historical data, they are valid only locally and extrapolations incorporate risk of increasing process variability. To overcome these difficulties, this paper presents a new decision support system for robust multiobjective optimization of interconnected processes. The plant is first divided into serially connected units to model the process, product quality, energy consumption, and corresponding uncertainty measures. Then multiobjective gradient descent algorithm is used to solve the problem in line with user's preference information. Finally, the optimization results are visualized for analysis and decision making. In practice, if further iterations of the optimization algorithm are considered, validity of the local models must be checked prior to proceeding to further iterations. The method is implemented by a MATLAB-based interactive tool DataExplorer supporting a range of data analysis, modeling, and multiobjective optimization techniques. The proposed approach was tested in two U.K.-based commercial paper mills where the aim was reducing steam consumption and increasing productivity while maintaining the product quality by optimization of vacuum pressures in forming and press sections. The experimental results demonstrate the effectiveness of the method. © 2006 IEEE.
Resumo:
Information visualization can accelerate perception, provide insight and control, and harness this flood of valuable data to gain a competitive advantage in making business decisions. Although such a statement seems to be obvious, there is a lack in the literature of practical evidence of the benefit of information visualization. The main contribution of this paper is to illustrate how, for a major European apparel retailer, the visualization of performance information plays a critical role in improving business decisions and in extracting insights from Redio Frequency Idetification (RFID)-based performance measures. In this paper, we identify - based on a literature review - three fundamental managerial functions of information visualization, namely as: a communication medium, a knowledge management means, and a decision-support instrument. Then, we provide - based on real industrial case evidence - how information visualization supports business decision-making. Several examples are provided to evidence the benefit of information visualization through its three identified managerial functions. We find that - depending on the way performance information is shaped, communicated, and made interactive - it not only helps decision making, but also offers a means of knowledge creation, as well as an appropriate communication channel. © 2014 World Scientific Publishing Company.
Resumo:
旱地作物需水量预报决策辅助系统是利用人工智能技术 ,在 Penman公式的基础上结合现有西北旱区的农学知识、模型以及经验进行系统集成而建立的智能化计算机软件系统 ,该系统是西北地区节水农业专家系统的一个子系统。在生产实践中可为陕西关中地区的冬小麦、夏玉米的栽培作出灌溉方案的决策咨询。
Resumo:
Intelligent polymers or stimuli-responsive polymers may exhibit distinct transitions in physical-chemical properties, including conformation, polarity, phase structure and chemical composition in response to changes in environmental stimuli. Due to their unique 'intelligent' characteristics, stimuli-sensitive polymers have found a wide variety of applications in biomedical and nanotechnological fields. This review focuses on the recent developments in biomedical application of intelligent polymer systems, such as intelligent hydrogel systems, intelligent drug delivery systems and intelligent molecular recognition systems. Also, the possible future directions for the application of these intelligent polymer systems in the biomedical field are presented.