976 resultados para information units
Resumo:
Each year, the Children’s Book Council of Australia (CBCA) administers a number of Book of the Year Awards, including the Eve Pownall Award for Information Books. The books chosen by the CBCA constitute a contemporary canon of Australian children’s literature, and serve to both shape and reflect current educational policies and practices as well as young Australians’ sense of themselves and their nation. This paper reads a selection of award-winning Australian non-fiction children’s literature in the context of colonialism, curriculum, military myths, and Aboriginal perspectives on national history and identity.
Implementation Guide for Surveillance of Staphylococcus aureus Bacteraemia -- [Consultation Edition]
Resumo:
The Implementation Guide for the Hospital Surveillance of SAB has been produced by the Healthcare Associated Infection (HAI) Technical Working Group of the Australian Commission on Safety and Quality in Health Care (ACSQHC), and endorsed by the HAI Advisory Group. The Technical Working Group is made up of representatives invited from surveillance units and the ACSQHC, who have had input into the preparation of this Guide. The Guide has been developed to ensure consistency in reporting of SAB across public and private hospitals to enable accurate national reporting and benchmarking. It is intended to be used by Australian hospitals and organisations to support the implementation of healthcare associated Staphylococcus aureus bacteraemia(SAB) surveillance using the endorsed case definition1 in the box below and further detail in the Data Set Specification.
Resumo:
The implementation guide for the surveillance of CLABSI in intensive care units (ICU) was produced by the Healthcare Associated Infection (HAI) Technical Working Group of the Australian Commission on Safety and Quality in Health Care(ACSQHC), and endorsed by the ACSQHC HAI Advisory Committee. State surveillance units, the ACSQHC and the Australian and New Zealand Intensive Care Society (ANZICS) have representatives on the Technical Working Group, and have provided input into this document.
Resumo:
What are the information practices of teen content creators? In the United States over two thirds of teens have participated in creating and sharing content in online communities that are developed for the purpose of allowing users to be producers of content. This study investigates how teens participating in digital participatory communities find and use information as well as how they experience the information. From this investigation emerged a model of their information practices while creating and sharing content such as film-making, visual art work, story telling, music, programming, and web site design in digital participatory communities. The research uses grounded theory methodology in a social constructionist framework to investigate the research problem: what are the information practices of teen content creators? Data was gathered through semi-structured interviews and observation of teen’s digital communities. Analysis occurred concurrently with data collection, and the principle of constant comparison was applied in analysis. As findings were constructed from the data, additional data was collected until a substantive theory was constructed and no new information emerged from data collection. The theory that was constructed from the data describes five information practices of teen content creators. The five information practices are learning community, negotiating aesthetic, negotiating control, negotiating capacity, and representing knowledge. In describing the five information practices there are three necessary descriptive components, the community of practice, the experiences of information and the information actions. The experiences of information include information as participation, inspiration, collaboration, process, and artifact. Information actions include activities that occur in the categories of gathering, thinking and creating. The experiences of information and information actions intersect in the information practices, which are situated within the specific community of practice, such as a digital participatory community. Finally, the information practices interact and build upon one another and this is represented in a graphic model and explanation.
Resumo:
Background: High levels of distress and need for self-care information by patients commencing chemotherapy suggest that current prechemotherapy education is suboptimal. We conducted a randomised, controlled trial of a prechemotherapy education intervention (ChemoEd) to assess impact on patient distress, treatment-related concerns, and the prevalence and severity of and bother caused by six chemotherapy side-effects. Patients and methods: One hundred and ninety-two breast, gastrointestinal, and haematologic cancer patients were recruited before the trial closing prematurely (original target 352). ChemoEd patients received a DVD, question-prompt list, self-care information, an education consultation ≥24 h before first treatment (intervention 1), telephone follow-up 48 h after first treatment (intervention 2), and a face-to-face review immediately before second treatment (intervention 3). Patient outcomes were measured at baseline (T1: pre-education) and immediately preceding treatment cycles 1 (T2) and 3 (T3). Results: ChemoEd did not significantly reduce patient distress. However, a significant decrease in sensory/psychological (P = 0.027) and procedural (P = 0.03) concerns, as well as prevalence and severity of and bother due to vomiting (all P = 0.001), were observed at T3. In addition, subgroup analysis of patients with elevated distress at T1 indicated a significant decrease (P = 0.035) at T2 but not at T3 (P = 0.055) in ChemoEd patients. Conclusions: ChemoEd holds promise to improve patient treatment-related concerns and some physical/psychological outcomes; however, further research is required on more diverse patient populations to ensure generalisability.
Resumo:
Advances in algorithms for approximate sampling from a multivariable target function have led to solutions to challenging statistical inference problems that would otherwise not be considered by the applied scientist. Such sampling algorithms are particularly relevant to Bayesian statistics, since the target function is the posterior distribution of the unobservables given the observables. In this thesis we develop, adapt and apply Bayesian algorithms, whilst addressing substantive applied problems in biology and medicine as well as other applications. For an increasing number of high-impact research problems, the primary models of interest are often sufficiently complex that the likelihood function is computationally intractable. Rather than discard these models in favour of inferior alternatives, a class of Bayesian "likelihoodfree" techniques (often termed approximate Bayesian computation (ABC)) has emerged in the last few years, which avoids direct likelihood computation through repeated sampling of data from the model and comparing observed and simulated summary statistics. In Part I of this thesis we utilise sequential Monte Carlo (SMC) methodology to develop new algorithms for ABC that are more efficient in terms of the number of model simulations required and are almost black-box since very little algorithmic tuning is required. In addition, we address the issue of deriving appropriate summary statistics to use within ABC via a goodness-of-fit statistic and indirect inference. Another important problem in statistics is the design of experiments. That is, how one should select the values of the controllable variables in order to achieve some design goal. The presences of parameter and/or model uncertainty are computational obstacles when designing experiments but can lead to inefficient designs if not accounted for correctly. The Bayesian framework accommodates such uncertainties in a coherent way. If the amount of uncertainty is substantial, it can be of interest to perform adaptive designs in order to accrue information to make better decisions about future design points. This is of particular interest if the data can be collected sequentially. In a sense, the current posterior distribution becomes the new prior distribution for the next design decision. Part II of this thesis creates new algorithms for Bayesian sequential design to accommodate parameter and model uncertainty using SMC. The algorithms are substantially faster than previous approaches allowing the simulation properties of various design utilities to be investigated in a more timely manner. Furthermore the approach offers convenient estimation of Bayesian utilities and other quantities that are particularly relevant in the presence of model uncertainty. Finally, Part III of this thesis tackles a substantive medical problem. A neurological disorder known as motor neuron disease (MND) progressively causes motor neurons to no longer have the ability to innervate the muscle fibres, causing the muscles to eventually waste away. When this occurs the motor unit effectively ‘dies’. There is no cure for MND, and fatality often results from a lack of muscle strength to breathe. The prognosis for many forms of MND (particularly amyotrophic lateral sclerosis (ALS)) is particularly poor, with patients usually only surviving a small number of years after the initial onset of disease. Measuring the progress of diseases of the motor units, such as ALS, is a challenge for clinical neurologists. Motor unit number estimation (MUNE) is an attempt to directly assess underlying motor unit loss rather than indirect techniques such as muscle strength assessment, which generally is unable to detect progressions due to the body’s natural attempts at compensation. Part III of this thesis builds upon a previous Bayesian technique, which develops a sophisticated statistical model that takes into account physiological information about motor unit activation and various sources of uncertainties. More specifically, we develop a more reliable MUNE method by applying marginalisation over latent variables in order to improve the performance of a previously developed reversible jump Markov chain Monte Carlo sampler. We make other subtle changes to the model and algorithm to improve the robustness of the approach.
Resumo:
This paper presents a graph-based method to weight medical concepts in documents for the purposes of information retrieval. Medical concepts are extracted from free-text documents using a state-of-the-art technique that maps n-grams to concepts from the SNOMED CT medical ontology. In our graph-based concept representation, concepts are vertices in a graph built from a document, edges represent associations between concepts. This representation naturally captures dependencies between concepts, an important requirement for interpreting medical text, and a feature lacking in bag-of-words representations. We apply existing graph-based term weighting methods to weight medical concepts. Using concepts rather than terms addresses vocabulary mismatch as well as encapsulates terms belonging to a single medical entity into a single concept. In addition, we further extend previous graph-based approaches by injecting domain knowledge that estimates the importance of a concept within the global medical domain. Retrieval experiments on the TREC Medical Records collection show our method outperforms both term and concept baselines. More generally, this work provides a means of integrating background knowledge contained in medical ontologies into data-driven information retrieval approaches.
Resumo:
Retrieving information from Twitter is always challenging due to its large volume, inconsistent writing and noise. Most existing information retrieval (IR) and text mining methods focus on term-based approach, but suffers from the problems of terms variation such as polysemy and synonymy. This problem deteriorates when such methods are applied on Twitter due to the length limit. Over the years, people have held the hypothesis that pattern-based methods should perform better than term-based methods as it provides more context, but limited studies have been conducted to support such hypothesis especially in Twitter. This paper presents an innovative framework to address the issue of performing IR in microblog. The proposed framework discover patterns in tweets as higher level feature to assign weight for low-level features (i.e. terms) based on their distributions in higher level features. We present the experiment results based on TREC11 microblog dataset and shows that our proposed approach significantly outperforms term-based methods Okapi BM25, TF-IDF and pattern based methods, using precision, recall and F measures.
Resumo:
New technologies and the pace of change in modern society mean changes for classroom teaching and learning. Information and communication technologies (ICTs) feature in everyday life and provide ample opportunities for enhancing classroom programs. This article outlines how ICTs complement curriculum implementation in one year two classroom. It suggests practical strategies demonstrating how teachers can make ICTs work for them and progressively teach children how to make ICTs work for them.
Resumo:
Entity-oriented search has become an essential component of modern search engines. It focuses on retrieving a list of entities or information about the specific entities instead of documents. In this paper, we study the problem of finding entity related information, referred to as attribute-value pairs, that play a significant role in searching target entities. We propose a novel decomposition framework combining reduced relations and the discriminative model, Conditional Random Field (CRF), for automatically finding entity-related attribute-value pairs from free text documents. This decomposition framework allows us to locate potential text fragments and identify the hidden semantics, in the form of attribute-value pairs for user queries. Empirical analysis shows that the decomposition framework outperforms pattern-based approaches due to its capability of effective integration of syntactic and semantic features.
Resumo:
Phenomenography is a research approach devised to allow the investigation of varying ways in which people experience aspects of their world. Whilst growing attention is being paid to interpretative research in LIS, it is not always clear how the outcomes of such research can be used in practice. This article explores the potential contribution of phenomenography in advancing the application of phenomenological and hermeneutic frameworks to LIS theory, research and practice. In phenomenography we find a research toll which in revealing variation, uncovers everyday understandings of phenomena and provides outcomes which are readily applicable to professional practice. THe outcomes may be used in human computer interface design, enhancement, implementation and training, in the design and evaluation of services, and in education and training for both end users and information professionals. A proposed research territory for phenomenography in LIS includes investigating qualitative variation in the experienced meaning of: 1) information and its role in society 2) LIS concepts and principles 3) LIS processes and; 4) LIS elements.
Resumo:
This item provides supplementary materials for the paper mentioned in the title, specifically a range of organisms used in the study. The full abstract for the main paper is as follows: Next Generation Sequencing (NGS) technologies have revolutionised molecular biology, allowing clinical sequencing to become a matter of routine. NGS data sets consist of short sequence reads obtained from the machine, given context and meaning through downstream assembly and annotation. For these techniques to operate successfully, the collected reads must be consistent with the assumed species or species group, and not corrupted in some way. The common bacterium Staphylococcus aureus may cause severe and life-threatening infections in humans,with some strains exhibiting antibiotic resistance. In this paper, we apply an SVM classifier to the important problem of distinguishing S. aureus sequencing projects from alternative pathogens, including closely related Staphylococci. Using a sequence k-mer representation, we achieve precision and recall above 95%, implicating features with important functional associations.
Resumo:
Recent advances in the planning and delivery of radiotherapy treatments have resulted in improvements in the accuracy and precision with which therapeutic radiation can be administered. As the complexity of the treatments increases it becomes more difficult to predict the dose distribution in the patient accurately. Monte Carlo methods have the potential to improve the accuracy of the dose calculations and are increasingly being recognised as the “gold standard” for predicting dose deposition in the patient. In this study, software has been developed that enables the transfer of treatment plan information from the treatment planning system to a Monte Carlo dose calculation engine. A database of commissioned linear accelerator models (Elekta Precise and Varian 2100CD at various energies) has been developed using the EGSnrc/BEAMnrc Monte Carlo suite. Planned beam descriptions and CT images can be exported from the treatment planning system using the DICOM framework. The information in these files is combined with an appropriate linear accelerator model to allow the accurate calculation of the radiation field incident on a modelled patient geometry. The Monte Carlo dose calculation results are combined according to the monitor units specified in the exported plan. The result is a 3D dose distribution that could be used to verify treatment planning system calculations. The software, MCDTK (Monte Carlo Dicom ToolKit), has been developed in the Java programming language and produces BEAMnrc and DOSXYZnrc input files, ready for submission on a high-performance computing cluster. The code has been tested with the Eclipse (Varian Medical Systems), Oncentra MasterPlan (Nucletron B.V.) and Pinnacle3 (Philips Medical Systems) planning systems. In this study the software was validated against measurements in homogenous and heterogeneous phantoms. Monte Carlo models are commissioned through comparison with quality assurance measurements made using a large square field incident on a homogenous volume of water. This study aims to provide a valuable confirmation that Monte Carlo calculations match experimental measurements for complex fields and heterogeneous media.
Resumo:
The Therapeutic Advice and Information Service was funded by the National Prescribing Service to provide a national drug information service for health professionals working in the community. For ten years the service achieved high levels of client satisfaction, and reached its contracted target of 6000 enquiries about medicines per year, however the service ceased on 30 June 2010.
Resumo:
Detailed investigation of an intermediate member of the reddingite–phosphoferrite series, using infrared and Raman spectroscopy, scanning electron microcopy and electron microprobe analysis, has been carried out on a homogeneous sample from a lithium-bearing pegmatite named Cigana mine, near Conselheiro Pena, Minas Gerais, Brazil. The determined formula is (Mn1.60Fe1.21Ca0.01Mg0.01)∑2.83(PO4)2.12⋅(H2O2.85F0.01)∑2.86 indicating predominance in the reddingite member. Raman spectroscopy coupled with infrared spectroscopy supports the concept of phosphate, hydrogen phosphate and dihydrogen phosphate units in the structure of reddingite-phosphoferrite. Infrared and Raman bands attributed to water and hydroxyl stretching modes are identified. Vibrational spectroscopy adds useful information to the molecular structure of reddingite–phosphoferrite.