929 resultados para immune suppressor
Resumo:
Aims: Development of effective immune-based therapies for patients with non-small-cell lung carcinoma (NSCLC) depends on an accurate characterization of complex interactions that occur between immune cells and the tumour environment. Methods and results: Innate and adaptive immune responses were evaluated in relation to prognosis in 65 patients with surgically excised NSCLC. Immunohistochemistry and morphometry were used to determine the abundance and distribution of immune cells. We found low numbers of immune cells and levels of cytokines in the tumour environment when compared with surrounding parenchyma. Smoking was associated inversely with the adaptive immune response and directly with innate immunity. We observed a prominent adaptive immune response in squamous cell carcinomas (SCC) but greater innate immune responses in adenocarcinomas and large cell carcinomas. Cox model analysis showed a low risk of death for smoking <41 packs/year, N-0 tambour stage, squamous carcinoma, CD4(+) > 16.81% and macrophages/monocytes >4.5%. Collectively, the data indicate that in NSCLC there is not a substantive local immune cell infiltrate within the tumour. Conclusion: Although immune cell infiltration is limited in NSCLC it appears to have an impact on prognosis and this may be of relevance for new immunotherapeutic approaches.
Resumo:
The expression of Langerhans cell (LC) and dermal dendritic cell (dDC) as well as T CD4+ and CD8+ immune responses was evaluated in the skin of BALB/c mice experimentally infected by L. (L.) amazonensis (La) and L. (V.) braziliensis (Lb). At 4th and 8th weeks post infection (PI), skin biopsies were collected to determine the parasite load and CD207+, CD11c+, CD4+, CD8+, iNOS+ cellular densities. Cytokine (IFN-?, IL-4 and IL-10) profiles were also analysed in draining lymph node. At 4th week, the densities of CD207+ and CD11c+ were higher in the La infection, while in the Lb infection, these markers revealed a significant increase at 8th week. At 4th week, CD4+ and CD8+ were higher in the La infection, but at 8th week, there was a substantial increase in both markers in the Lb infection. iNOS+ was higher in the Lb infection at 4th and 8th weeks. In contrast, the parasite load was higher in the La infection at 4th and 8th weeks. The concentration of IFN-? was higher in the Lb infection, but IL-4 and IL-10 were higher in the La infection at 4th and 8th weeks. These results confirm the role of the Leishmania species in the BALB/c mice disease characterized by differences in the expression of dendritic cells and cellular immune response.
Resumo:
Mesenchymal stem cells (MSCs) are characterized as multipotent stromal cells with the capacity for both self-renewal and differentiation into mesodermal cell lineages. MSCs also have a fibroblast-like phenotype and can be isolated from several tissues. In recent years, researchers have found that MSCs secrete several soluble factors that exert immunosuppressive effects by modulating both innate (macrophages, dendritic and NK cells) and adaptive (B cells and CD4+ and CD8+ T cells) immune responses. This review summarizes the principal trophic factors that are related to immune regulation and secreted by MSCs under both autoimmune and inflammatory conditions. The understanding of mechanisms that regulate immunity in MSCs field is important for their future use as a novel cellular-based immunotherapy with clinical applications in several diseases.
Resumo:
BACKGROUND: Acquired immunodeficiency syndrome (AIDS) is a pandemic disease commonly associated with respiratory infections, hypoxemia, and death. Noninvasive PEEP has been shown to improve hypoxemia. In this study, we evaluated the physiologic effects of different levels of noninvasive PEEP in hypoxemic AIDS patients. METHODS: Thirty AIDS patients with acute hypoxemic respiratory failure received a randomized sequence of noninvasive PEEP (5, 10, or 15 cm H2O) for 20 min. PEEP was provided through a facial mask with pressure-support ventilation (PSV) of 5 cm H2O and an F-IO2, of 1. Patients were allowed to breathe spontaneously for a 20-min washout period in between each PEEP trial. Arterial blood gases and clinical variables were recorded after each PEEP treatment. RESULTS: The results indicate that oxygenation improves linearly with increasing levels of PEEP. However, oxygenation levels were similar regardless of the first PEEP level administered (5, 10, or 15 cm H2O), and only the subgroup that received an initial treatment of the lowest level of PEEP (ie, 5 cm H2O) showed further improvements in oxygenation when higher PEEP levels were subsequently applied. The P-aCO2, also increased in response to PEEP elevation, especially with the highest level of PEEP (ie, 15 cm H2O). PSV of 5 cm H2O use was associated with significant and consistent improvements in the subjective sensations of dyspnea and respiratory rate reported by patients treated with any level of PEEP (from 0 to 15 cm H2O). CONCLUSIONS: AIDS patients with hypoxemic respiratory failure improve oxygenation in response to a progressive sequential elevation of PEEP (up to 15 cm H2O). However, corresponding elevations in P-aCO2, limit the recommended level of PEEP to 10 cm H2O. At a level of 5 cm H2O, PSV promotes an improvement in the subjective sensation of dyspnea regardless of the PEEP level employed.
Resumo:
Background and purposes: Anti-aquaporin 4 antibodies are specific markers for Devics disease. This study aimed to test if this high specificity holds in the context of a large spectrum of systemic autoimmune and non-autoimmune diseases. Methods: Anti-aquaporin-4 antibodies (NMO-IgG) were determined by indirect immunofluorescence (IIF) on mouse cerebellum in 673 samples, as follows: group I (clinically defined Devic's disease, n = 47); group II [ inflammatory/demyelinating central nervous system (CNS) diseases, n = 41]; group III (systemic and organ-specific autoimmune diseases, n = 250); group IV (chronic or acute viral diseases, n = 35); and group V (randomly selected samples from a general clinical laboratory, n = 300). Results: MNO-IgG was present in 40/47 patients with classic Devic's disease (85.1% sensitivity) and in 13/22 (59.1%) patients with disorders related to Devic's disease. The latter 13 positive samples had diagnosis of longitudinally extensive transverse myelitis (n = 10) and isolated idiopathic optic neuritis (n = 3). One patient with multiple sclerosis and none of the remaining 602 samples with autoimmune and miscellaneous diseases presented NMO-IgG (99.8% specificity). The autoimmune disease subset included five systemic lupus erythematosus individuals with isolated or combined optic neuritis and myelitis and four primary Sjogren's syndrome (SS) patients with cranial/peripheral neuropathy. Conclusions: The available data clearly point to the high specificity of anti-aquaporin-4 antibodies for Devic's disease and related syndromes also in the context of miscellaneous non-neurologic autoimmune and non-autoimmune disorders.
Resumo:
The innate immune response of insects is one of the factors that may dictate their susceptibility to viral infection. Two immune signaling pathways, Toll and JAK-STAT, and the RNA interference (RNAi) pathway are involved in Aedes aegypti responses against dengue virus (DENV), however natural differences in these antiviral defenses among mosquito populations have not been studied. Here, two field Ae. aegypti populations from distinct ecological environments, one from Recife and the other from Petrolina (Brazil), and a laboratory strain were studied for their ability to replicate a primary isolate of dengue virus serotype 2 (DENV-2). Virus infectivity and replication were determined in insect tissues collected after viral exposure through reverse-transcription real time PCR (RT-PCR). The expression of a transcript representing these defense mechanisms (Toll, JAK-STAT and RNAi) in the midgut and fat body was studied with RTPCR to evaluate variations in innate immune mechanisms possibly employed against DENV. Analyses of infection rates indicated that the field populations were more susceptible to DENV-2 infection than the lab strain. There were distinct expression patterns among mosquito populations, in both control and infected insects. Moreover, lower expression of immune molecules in DENV-2-infected insects compared to controls was observed in the two field populations. These results suggest that natural variations in vector competence against DENV may be partly due to differences in mosquito defense mechanisms, and that the down-regulation of immune transcripts after viral infection depends on the insect strain. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
IgA nephropathy (IgAN), the most common primary glomerulonephritis worldwide, has significant morbidity and mortality as 20-40% of patients progress to end-stage renal disease within 20 years of onset. In order to gain insight into the molecular mechanisms involved in the progression of IgAN, we systematically evaluated renal biopsies from such patients. This showed that the MAPK/ERK signaling pathway was activated in the mesangium of patients presenting with over 1 g/day proteinuria and elevated blood pressure, but absent in biopsy specimens of patients with IgAN and modest proteinuria (<1 g/day). ERK activation was not associated with elevated galactose-deficient IgA1 or IgG specific for galactose-deficient IgA1 in the serum. In human mesangial cells in vitro, ERK activation through mesangial IgA1 receptor (CD71) controlled pro-inflammatory cytokine secretion and was induced by large-molecular-mass IgA1-containing circulating immune complexes purified from patient sera. Moreover, IgA1-dependent ERK activation required renin-angiotensin system as its blockade was efficient in reducing proteinuria in those patients exhibiting substantial mesangial activation of ERK. Thus, ERK activation alters mesangial cell-podocyte crosstalk, leading to renal dysfunction in IgAN. Assessment of MAPK/ERK activation in diagnostic renal biopsies may predict the therapeutic efficacy of renin-angiotensin system blockers in IgAN. Kidney International (2012) 82, 1284-1296; doi:10.1038/ki.2012.192; published online 5 September 2012
Resumo:
Background and Objectives Transfusion-related acute lung injury (TRALI) is characterized by leukocyte transmigration and alveolar capillary leakage shortly after transfusion. TRALI pathogenesis has not been fully elucidated. In some cases, the infusion of alloantibodies (immune model), whereas in others the combination of neutrophil priming by proinflammatory molecules with the subsequent infusion of biological response modifiers (BRMs) in the hemocomponent (non-immune model) have been implicated. Our aim was to compare the pathological events involved in TRALI induced by antibodies or BRMs using murine models. Materials and Methods In the immune model, human HNA-2+ neutrophils were incubated in vitro with a monoclonal antibody (anti-CD177, clone 7D8) directed against the HNA-2 antigen and injected i.v. in NOD/SCID mice. In the non-immune model, BALB/c mice were treated with low doses of lipopolysaccharide (LPS) followed by platelet-activating factor (PAF) infusion 2 h later. Forty minutes after PAF administration, or 6 h after neutrophil injection, lungs were isolated and histological analysis, determination of a variety of cytokines and chemokines including keratinocyte-derived chemokine (KC), MIP-2, the interleukins IL-1 beta, IL-6, IL-8 as well as TNFa, cell influx and alveolar capillary leakage were performed. Results In both models, characteristic histological findings of TRALI and an increase in KC and MIP-2 levels were detected. In contrast to the immune model, in the non-immune model, there was a dramatic increase in IL-1 beta and TNFa. However, capillary leakage was only detected if PAF was administrated. Conclusions Regardless of the triggering event(s), KC, MIP-2 and integrins participate in TRALI pathogenesis, whereas PAF is essential for capillary leakage when two events are involved.
Resumo:
Inflammation contributes to the pathogenesis of chronic kidney disease (CKD). Molecules released by the inflamed injured tissue can activate toll-like receptors (TLRs), thereby modulating macrophage and CD4+ T-cell activity. We propose that in renal fibrogenesis, M2 macrophages are recruited and activated in a T helper subset 2 cell (TH2)-prone inflammatory milieu in a MyD88- dependent manner. Mice submitted to unilateral ureteral ligation (UUO) demonstrated an increase in macrophage infiltration with collagen deposition after 7 d. Conversely, TLR2, TLR4 and MyD88 knockout (KO) mice had an improved renal function together with diminished TH2 cytokine production and decreased fibrosis formation. Moreover, TLR2, TLR4 and MyD88 KO animals exhibited less M2 macrophage infiltration, namely interleukin (IL)-10+ and CD206+ CD11bhigh cells, at 7 d after surgery. We evaluated the role of a TH2 cytokine in this context, and observed that the absence of IL-4 was associated with better renal function, decreased IL-13 and TGF- β levels, reduced arginase activity and a decrease in fibrosis formation when compared with IL-12 KO and wild-type (WT) animals. Indeed, the better renal outcomes and the decreased fibrosis formation were restricted to the deficiency of IL-4 in the hematopoietic compartment. Finally, macrophage depletion, rather than the absence of T cells, led to reduced lesions of the glomerular filtration barrier and decreased collagen deposition. These results provide evidence that future therapeutic strategies against renal fibrosis should be accompanied by the modulation of the M1:M2 and TH1:TH2 balance, as TH2 and M2 cells are predictive of fibrosis toward mechanisms that are sensed by innate immune response and triggered in a MyD88-dependent pathway.
Resumo:
Introduction: Cell adhesion molecules (CAM) are required for maintaining a normal epithelial phenotype, and abnormalities in CAM expression have been related to cancer progression, including bladder urothelial carcinomas. There is only one study that correlates E-cadherin and alpha-, beta- and gamma-catenin expression with prognosis of upper tract urothelial carcinomas. Our aim is to study the pattern of immune expression of these CAMs in urothelial carcinomas from the renal pelvis and ureter in patients who have been treated surgically. Our goal is to correlate these expression levels and characteristics with well-known prognostic parameters for disease-free survival. Materials and Methods: We evaluated specimens from 20 patients with urothelial carcinomas of the renal pelvis and ureter who were treated with nephroureterectomy or ureterectomy between June 1997 and January 2007. CAM expression was evaluated by immunohistochemistry in a tissue microarray and correlated with histopathological characteristics and patient outcomes after a mean follow-up of 55 months. Results: We observed a relationship between E-cadherin expression and disease recurrence. Disease recurrence occurred in 87.5% of patients with strong E-cadherin expression. Only 50.0% of patients with moderate expression and 0% of patients with weak or no expression of E-cadherin had disease recurrence (p = 0.014). There was also a difference in disease-free survival. Patients with strong E-cadherin expression had a mean disease-free survival rate of 49.1 months, compared to 83.9 months for patients with moderate expression (p = 0.011). Additionally, an absence of a-catenin expression was associated with tumors that were larger than 3 cm (p = 0.003). Conclusions: We demonstrated for the first time that immune expression of E-cadherin is related to tumor recurrence and disease-free survival rates, and the absence of a-catenin expression is related to tumor size in upper tract urothelial carcinomas.
Resumo:
Objectives The aim of the present paper is to evaluate the immune response and tolerability of varicella vaccine in children and adolescents with systemic lupus erythematosus previously exposed to varicella-zoster virus. Methods We performed a prospective and controlled study on a group of 54 SLE patients that were chosen at random to be or not to be vaccinated (28 were vaccinated and 26 were not). Twenty-eight healthy controls, of matching age and sex were also vaccinated. All were submitted to a questionnaire, physical evaluation and laboratory assays: lymphocyte immuno-phenotyping by flow cytometry, plasma varicella zoster virus (VZV) serology by ELISA and in vitro interferon gamma (IFN gamma) production by T-cells after stimulus with VZV antigen. They were evaluated before vaccination and at 30, 45, 180 and 360 days afterwards. Results We did not observe any differences in the frequency of adverse events in both vaccinated groups. At study entry, all individuals were seropositive for VZV antibodies. The serum VZV antibody titres similarly increased after vaccination. The frequency of flares and the SLEDAI score were also similar among the patients. Thirty days after vaccination the production of IFN gamma specific to VZV was lower in the SLE group compared to healthy, controls. In the follow-up we observed 4 cases of herpes zoster in the SLE unvaccinated group, but no zoster in the vaccinated group. Conclusion The varicella vaccine was well tolerated in SLE group, who had pre-existing immunity to varicella. The varicella vaccine immunogenicity measurement by serum antibody titres was appropriate. The incidence of HZ was lower in the vaccinated lupus group.
Resumo:
The DOK1 gene is a putative tumour suppressor gene located on the human chromosome 2p13 which is frequently rearranged in leukaemia and other human tumours. We previously reported that the DOK1 gene can be mutated and its expression down-regulated in human malignancies. However, the mechanism underlying DOK1 silencing remains largely unknown. We show here that unscheduled silencing of DOK1 expression through aberrant hypermethylation is a frequent event in a variety of human malignancies. DOK1 was found to be silenced in nine head and neck cancer (HNC) cell lines studied and DOK1 CpG hypermethylation correlated with loss of gene expression in these cells. DOK1 expression could be restored via demethylating treatment using 5-aza-2'deoxycytidine. In addition, transduction of cancer cell lines with DOK1 impaired their proliferation, consistent with the critical role of epigenetic silencing of DOK1 in the development and maintenance of malignant cells. We further observed that DOK1 hypermethylation occurs frequently in a variety of primary human neoplasm including solid tumours (93% in HNC, 81% in lung cancer) and haematopoietic malignancy (64% in Burkitt's lymphoma). Control blood samples and exfoliated mouth epithelial cells from healthy individuals showed a low level of DOK1 methylation, suggesting that DOK1 hypermethylation is a tumour specific event. Finally, an inverse correlation was observed between the level of DOK1 gene methylation and its expression in tumour and adjacent non tumour tissues. Thus, hypermethylation of DOK1 is a potentially critical event in human carcinogenesis, and may be a potential cancer biomarker and an attractive target for epigenetic-based therapy.
Resumo:
Background: Leishmania (Viannia) shawi parasite was first characterized in 1989. Recently the protective effects of soluble leishmanial antigen (SLA) from L. (V.) shawi promastigotes were demonstrated using BALB/c mice, the susceptibility model for this parasite. In order to identify protective fractions, SLA was fractionated by reverse phase HPLC and five antigenic fractions were obtained. Methods: F1 fraction was purified from L. (V.) shawi parasite extract by reverse phase HPLC. BALB/c mice were immunized once a week for two consecutive weeks by subcutaneous routes in the rump, using 25 mu g of F1. After 1 and 16 weeks of last immunization, groups were challenged in the footpad with L. (V.) shawi promastigotes. After 2 months, those same mice were sacrificed and parasite burden, cellular and humoral immune responses were evaluated. Results: The F1 fraction induced a high degree of protection associated with an increase in IFN-gamma, a decrease in IL-4, increased cell proliferation and activation of CD8(+)T lymphocytes. Long-term protection was acquired in F1-immunized mice, associated with increased CD4(+) central memory T lymphocytes and activation of both CD4+ and CD8(+) T cells. In addition, F1-immunized groups showed an increase in IgG2a levels. Conclusions: The inductor capability of antigens to generate memory lymphocytes that can proliferate and secrete beneficial cytokines upon infection could be an important factor in the development of vaccine candidates against American Tegumentary Leishmaniasis.
Resumo:
5-lipoxygenase-derived products have been implicated in both the inhibition and promotion of chronic infection. Here, we sought to investigate the roles of endogenous 5-lipoxygenase products and exogenous leukotrienes during Histoplasma capsulatum infection in vivo and in vitro. 5-LO deficiency led to increased lung CFU, decreased nitric oxide production and a deficient primary immune response during active fungal infection. Moreover, H. capsulatum-infected 5-LO-/- mice showed an intense influx of neutrophils and an impaired ability to generate and recruit effector T cells to the lung. The fungal susceptibility of 5-LO-/- mice correlated with a lower rate of macrophage ingestion of IgG-H. capsulatum relative to WT macrophages. Conversely, exogenous LTB4 and LTC4 restored macrophage phagocytosis in 5-LO deficient mice. Our results demonstrate that leukotrienes are required to control chronic fungal infection by amplifying both the innate and adaptive immune response during histoplasmosis.
Resumo:
Glioblastoma multiforme (GBM) is the most aggressive of the astrocytic malignancies and the most common intracranial tumor in adults. Although the epidermal growth factor receptor (EGFR) is overexpressed and/or mutated in at least 50% of GBM cases and is required for tumor maintenance in animal models, EGFR inhibitors have thus far failed to deliver significant responses in GBM patients. One inherent resistance mechanism in GBM is the coactivation of multiple receptor tyrosine kinases, which generates redundancy in activation of phosphoinositide-3'-kinase (PI3K) signaling. Here we demonstrate that the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor is frequently phosphorylated at a conserved tyrosine residue, Y240, in GBM clinical samples. Phosphorylation of Y240 is associated with shortened overall survival and resistance to EGFR inhibitor therapy in GBM patients and plays an active role in mediating resistance to EGFR inhibition in vitro. Y240 phosphorylation can be mediated by both fibroblast growth factor receptors and SRC family kinases (SFKs) but does not affect the ability of PTEN to antagonize PI3K signaling. These findings show that, in addition to genetic loss and mutation of PTEN, its modulation by tyrosine phosphorylation has important implications for the development and treatment of GBM.