988 resultados para immune defense


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pathogenic viruses have developed a molecular defense arsenal for their survival by counteracting the host anti-viral system known as RNA interference (RNAi). Cellular RNAi, in addition to regulating gene expression through microRNAs, also serves as a barrier against invasive foreign nucleic acids. RNAi is conserved across the biological species, including plants, animals and invertebrates. Viruses in turn, have evolved mechanisms that can counteract this anti-viral defense of the host. Recent studies of mammalian viruses exhibiting RNA silencing suppressor (RSS) activity have further advanced our understanding of RNAi in terms of host–virus interactions. Viral proteins and non-coding viral RNAs can inhibit the RNAi (miRNA/siRNA) pathway through different mechanisms. Mammalian viruses having dsRNA-binding regions and GW/WG motifs appear to have a high chance of conferring RSS activity. Although, RSSs of plant and invertebrate viruses have been well characterized, mammalian viral RSSs still need in-depth investigations to present the concrete evidences supporting their RNAi ablation characteristics. The information presented in this review together with any perspective research should help to predict and identify the RSS activity-endowed new viral proteins that could be the potential targets for designing novel anti-viral therapeutics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A botnet is a group of compromised computers, which are remotely controlled by hackers to launch various network attacks, such as DDoS attack and information phishing. Botnet has become a popular and productive tool behind many cyber attacks. Recently, the owners of some botnets, such as storm worm, torpig and conflicker, are employing fluxing techniques to evade detection. Therefore, the understanding of their fluxing tricks is critical to the success of defending from botnet attacks. Motivated by this, we survey the latest botnet attacks and defenses in this paper. We begin with introducing the principles of fast fluxing (FF) and domain fluxing (DF), and explain how these techniques were employed by botnet owners to fly under the radar. Furthermore, we investigate the state-of-art research on fluxing detection. We also compare and evaluate those fluxing detection methods by multiple criteria. Finally, we discuss future directions on fighting against botnet based attacks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical stressors such as infection, inflammation and tissue injury elicit activation of the hypofhalamic-pituitary-adrenal (HPA) axis. This response has significant implications for both immune and central nervous system function. Investigations in rats into the neural substrates responsible for HPA axis activation to an immune challenge have predominantly utilized an experimental paradigm involving the acute administration of the pro-inflammatory cytokine interleukin-1 β (IL-1β). It is well recognized that medial parvocellular corticotrophin-releasing factor cells of the paraventricular nucleus (mPVN CRF) are critical in generating HPA axis responses to an immune challenge but little is known about how peripheral immune signals can activate and/or modulate the mPVN CRF cells. Studies that have examined the afferent control of the mPVN CRF cell response to systemic IL-1β have centred largely on the inputs from brainstem catecholamine cells. However, other regulatory neuronal populations also merit attention and one such region is a component of the limbic system, the central nucleus of the amygdala (CeA). A large number of CeA cells are recruited following systemic IL-lβ administration and there is a significant body of work indicating that the CeA can influence HPA axis function. However, the contribution of the CeA to HPA axis responses to an immune challenge is only just beginning to be addressed. This review examines three aspects of HPA axis control by systemic IL-lβ; (i) whether the CeA has a role in generating HPA axis responses to systemic IL-1 β, (ii) the identity of the neural connections between the CeA and mPVN CRF cells that might be important to HPA axis responses and (iii) the mechanisms by which systemic IL-lβ triggers the recruitment of CeA cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using Fos immunolabelling as a marker of neuronal activation, we investigated the role of the parabrachial nucleus in generating central neuronal responses to the systemic administration of the proinflammatory cytokine interleukin-1β (1 μg/kg, i.a.). Relative to intact animals, parabrachial nucleus lesions significantly reduced the number of Fos-positive cells observed in the central amygdala (CeA), the bed nucleus of the stria terminalis (BNST), and the ventrolateral medulla (VLM) after systemic interleukin-1β. In a subsequent experiment in which animals received parabrachial-directed deposits of a retrograde tracer, it was found that many neurons located in the nucleus tractus solitarius (NTS) and the VLM neurons were both retrogradely labelled and Fos-positive after interleukin-1β administration. These results suggest that the parabrachial nucleus plays a critical role in interleukin-1β-induced Fos expression in CeA, BNST and VLM neurons and that neurons of the NTS and VLM may serve to trigger or at least influence changes in parabrachial nucleus activity that follows systemic interleukin-1β administration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypothalamic nuclei, particularly the paraventricular nuclei (PVN), are important brain sites responsible for central nervous system responses during an immune challenge. The brainstem catecholamine cells of the nucleus tractus solitarius (NTS) and ventrolateral medulla (VLM) have been shown to play critical roles in relaying systemic immune signals to the PVN. However, whilst it is well recognised that PVN divisions also innervate the NTS and VLM, it is not known whether descending PVN pathways can modulate the recruitment of brainstem cells during an immune challenge. Using systemic administration of the proinflammatory cytokine interleukin-1β, in combination with Fos immunolabelling, we firstly investigated the effect of PVN lesions on NTS and VLM catecholamine and non-catecholamine cell responses. We found that ibotenic acid lesions of the PVN significantly reduced numbers of Fos-positive non-catecholamine, noradrenergic and adrenergic cells observable in the VLM and NTS after interleukin-1β administration. We then investigated the origins of descending inputs to the VLM and NTS, activated by systemic interleukin-1β, by mapping the distribution of Fos-positive retrogradely-labelled cells in divisions of the PVN after iontophoretically depositing choleratoxin-b subunit into the NTS or VLM one week prior to interleukin-1β administration. We found that, after either NTS or VLM deposits, the majority of retrogradely-labelled Fos-positive cells activated by interleukin-1β were localised in the medial and lateral parvocellular PVN divisions. Retrogradely-labelled Fos-positive cells were also observed in the NTS after VLM deposits, and in the VLM after NTS tracer deposits, suggesting reciprocal communication between these two nuclei after systemic interleukin-1β. Thus the present study shows that the PVN has the capacity to modulate NTS and VLM responses after an immune challenge and that these may result from descending projections arising in the medial and lateral PVN divisions. These findings suggest that central nervous system responses to an immune challenge are likely to involve complex reciprocal connections between the PVN and the brainstem as well as between brainstem nuclei themselves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A common view for the preferable positions of thwarting worm propagation is at the highly connected nodes. However, in certain conditions, such as when some popular users (highly connected nodes in the network) have more vigilance on the malicious codes, this may not always be the truth. In this letter, we propose a measure of betweenness and closeness to locate the most suitable positions for slowing down the worm propagation. This work provides practical values to the defense of topological worms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributed Denial-of-Service attack (DDoS) is a major threat for cloud environment. Traditional defending approaches cannot be easily applied in cloud security due to their relatively low efficiency, large storage, to name a few. In view of this challenge, a Confidence-Based Filtering method, named CBF, is investigated for cloud computing environment, in this paper. Concretely speaking, the method is deployed by two periods, i.e., non-attack period and attack period. More specially, legitimate packets are collected at non-attack period, for extracting attribute pairs to generate a nominal profile. With the nominal profile, the CBF method is promoted by calculating the score of a particular packet at attack period, to determine whether to discard it or not. At last, extensive simulations are conducted to evaluate the feasibility of the CBF method. The result shows that CBF has a high scoring speed, a small storage requirement and an acceptable filtering accuracy, making it suitable for real-time filtering in cloud environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although both breast cancer and immune thrombocytopenic purpura (ITP) are common conditions, the simultaneous coexistence of these two diseases is rare. ITP is an autoimmune disease in which the presence of autoantibodies against platelets results in splenic sequestration and thrombocytopenia that may be associated with lymphoid neoplasms [1]. Except for an observational case series of 10 patients [2], only a few individual case reports of ITP coinciding with breast cancer have been reported [3–8]. We are reporting two cases with simultaneous confirmed ITP and breast cancer. The platelet counts in both women have improved during adjuvant breast cancer chemotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background
Lying downstream of a myriad of cytokine receptors, the Janus kinase (JAK) – Signal transducer and activator of transcription (STAT) pathway is pivotal for the development and function of the immune system, with additional important roles in other biological systems. To gain further insight into immune system evolution, we have performed a comprehensive bioinformatic analysis of the JAK-STAT pathway components, including the key negative regulators of this pathway, the SH2-domain containing tyrosine phosphatase (SHP), Protein inhibitors against Stats (PIAS), and Suppressor of cytokine signaling (SOCS) proteins across a diverse range of organisms.

Results
Our analysis has demonstrated significant expansion of JAK-STAT pathway components co-incident with the emergence of adaptive immunity, with whole genome duplication being the principal mechanism for generating this additional diversity. In contrast, expansion of upstream cytokine receptors appears to be a pivotal driver for the differential diversification of specific pathway components.

Conclusion
Diversification of JAK-STAT pathway components during early vertebrate development occurred concurrently with a major expansion of upstream cytokine receptors and two rounds of whole genome duplications. This produced an intricate cell-cell communication system that has made a significant contribution to the evolution of the immune system, particularly the emergence of adaptive immunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews new drug targets in the treatment of depression and new drug candidates to treat depression. Depression is characterized by aberrations in six intertwined pathways: (1) inflammatory pathways as indicated by increased levels of proinflammatory cytokines, e.g. interleukin-1 (IL-1), IL-6, and tumour necrosis factor α. (2) Activation of cell-mediated immune pathways as indicated by an increased production of interferon γ and neopterin. (3) Increased reactive oxygen and nitrogen species and damage by oxidative and nitrosative stress (O&NS), including lipid peroxidation, damage to DNA, proteins and mitochondria. (4) Lowered levels of key antioxidants, such as coenzyme Q10, zinc, vitamin E, glutathione, and glutathione peroxidase. (5) Damage to mitochondria and mitochondrial DNA and reduced activity of respiratory chain enzymes and adenosine triphosphate production. (6) Neuroprogression, which is the progressive process of neurodegeneration, apoptosis, and reduced neurogenesis and neuronal plasticity, phenomena that are probably caused by inflammation and O&NS. Antidepressants tend to normalize the above six pathways. Targeting these pathways has the potential to yield antidepressant effects, e.g. using cytokine antagonists, minocycline, Cox-2 inhibitors, statins, acetylsalicylic acid, ketamine, ω3 poly-unsaturated fatty acids, antioxidants, and neurotrophic factors. These six pathways offer new, pathophysiologically guided drug targets suggesting that novel therapies could be developed that target these six pathways simultaneously. Both nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activators and glycogen synthase kinase-3 (GSK-3) inhibitors target the six above-mentioned pathways. GSK-3 inhibitors have antidepressant effects in animal models of depression. Nrf2 activators and GSK-3 inhibitors have the potential to be advanced to phase-2 clinical trials to examine whether they augment the efficacy of antidepressants or are useful as monotherapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a neuro-immune model for Myalgic Encephalomyelitis/Chronic fatigue syndrome (ME/CFS). A wide range of immunological and neurological abnormalities have been reported in people suffering from ME/CFS. They include abnormalities in proinflammatory cytokines, raised production of nuclear factor-κB, mitochondrial dysfunctions, autoimmune responses, autonomic disturbances and brain pathology. Raised levels of oxidative and nitrosative stress (O&NS), together with reduced levels of antioxidants are indicative of an immuno-inflammatory pathology. A number of different pathogens have been reported either as triggering or maintaining factors. Our model proposes that initial infection and immune activation caused by a number of possible pathogens leads to a state of chronic peripheral immune activation driven by activated O&NS pathways that lead to progressive damage of self epitopes even when the initial infection has been cleared. Subsequent activation of autoreactive T cells conspiring with O&NS pathways cause further damage and provoke chronic activation of immuno-inflammatory pathways. The subsequent upregulation of proinflammatory compounds may activate microglia via the vagus nerve. Elevated proinflammatory cytokines together with raised O&NS conspire to produce mitochondrial damage. The subsequent ATP deficit together with inflammation and O&NS are responsible for the landmark symptoms of ME/CFS, including post-exertional malaise. Raised levels of O&NS subsequently cause progressive elevation of autoimmune activity facilitated by molecular mimicry, bystander activation or epitope spreading. These processes provoke central nervous system (CNS) activation in an attempt to restore immune homeostatsis. This model proposes that the antagonistic activities of the CNS response to peripheral inflammation, O&NS and chronic immune activation are responsible for the remitting-relapsing nature of ME/CFS. Leads for future research are suggested based on this neuro-immune model.