969 resultados para immune activity
Resumo:
Purpose To describe the physical activity (PA) levels of children attending after-school programs, 2) examine PA levels in specific after-school sessions and activity contexts, and 3) evaluate after-school PA differences in groups defined by sex and weight status. Methods One hundred forty-seven students in grades 3-6 (mean age: 10.1 +/- 0.7, 54.4% male, 16.5% overweight (OW), 22.8% at-risk for OW) from seven after-school programs in the midwestern United States wore Actigraph GT1M accelerometers for the duration of their attendance to the program. PA was objectively assessed on six occasions during an academic year (three fall and three spring). Stored activity counts were uploaded to a customized data-reduction program to determine minutes of sedentary (SED), light (LPA), moderate (MPA), vigorous (VPA), and moderate-to-vigorous (MVPA) physical activity. Time spent in each intensity category was calculated for the duration of program attendance, as well as specific after-school sessions (e.g., free play, snack time). Results On average, participants exhibited 42.6 min of SED, 40.8 min of LPA, 13.4 min of MPA, and 5.3 min of VPA. The average accumulation of MVPA was 20.3 min. Boys exhibited higher levels of MPA, VPA, and MVPA, and lower levels of SED and LPA, than girls. OW and at-risk-for-OW students exhibited significantly less VPA than nonoverweight students, but similar levels of LPA, MPA, and MVPA. MVPA levels were significantly higher during free-play activity sessions than during organized or structured activity sessions. Conclusion After-school programs seem to be an important contributor to the PA of attending children. Nevertheless, ample room for improvement exists by making better use of existing time devoted to physical activity.
Resumo:
Purpose The purpose of this study was to evaluate the validity of the CSA activity monitor as a measure of children's physical activity using energy expenditure (EE) as a criterion measure. Methods Thirty subjects aged 10 to 14 performed three 5-min treadmill bouts at 3, 4, and 6 mph, respectively. While on the treadmill, subjects wore CSA (WAM 7164) activity monitors on the right and left hips. (V) over dot O-2 was monitored continuously by an automated system. EE was determined by multiplying the average (V) over dot O-2 by the caloric equivalent of the mean respiratory exchange ratio. Results Repeated measures ANOVA indicated that both CSA monitors were sensitive to changes in treadmill speed. Mean activity counts from each CSA unit were not significantly different and the intraclass reliability coefficient for the two CSA units across all speeds was 0.87. Activity counts from both CSA units were strongly correlated with EE (r = 0.86 and 0.87, P < 0.001). An EE prediction equation was developed from 20 randomly selected subjects and cross-validated on the remaining 10. The equation predicted mean EE within 0.01 kcal.min(-1). The correlation between actual and predicted values was 0.93 (P < 0.01) and the SEE was 0.93 kcal.min(-1). Conclusion These data indicate that the CSA monitor is a valid and reliable tool for quantifying treadmill walking and running in children.
Resumo:
Child care centers differ systematically with respect to the quality and quantity of physical activity they provide, suggesting that center-level policies and practices, as well as the center's physical environment, are important influences on children's physical activity behavior. Purpose To summarize and critically evaluate the extant peer-reviewed literature on the influence of child care policy and environment on physical activity in preschool-aged children. Methods A computer database search identified seven relevant studies that were categorized into three broad areas: cross-sectional studies investigating the impact of selected center-level policies and practices on moderate-to-vigorous physical activity (MVPA), studies correlating specific attributes of the outdoor play environment with the level and intensity of MVPA, and studies in which a specific center-level policy or environmental attribute was experimentally manipulated and evaluated for changes in MVPA. Results Staff education and training, as well as staff behavior on the playground, seem to be salient influences on MVPA in preschoolers. Lower playground density (less children per square meter) and the presence of vegetation and open play areas also seem to be positive influences on MVPA. However, not all studies found these attributes to be significant. The availability and quality of portable play equipment, not the amount or type of fixed play equipment, significantly influenced MVPA levels. Conclusions Emerging evidence suggests that several policy and environmental factors contribute to the marked between-center variability in physical activity and sedentary behavior. Intervention studies targeting these factors are thus warranted.
Resumo:
Previous studies have demonstrated that pattern recognition approaches to accelerometer data reduction are feasible and moderately accurate in classifying activity type in children. Whether pattern recognition techniques can be used to provide valid estimates of physical activity (PA) energy expenditure in youth remains unexplored in the research literature. Purpose: The objective of this study is to develop and test artificial neural networks (ANNs) to predict PA type and energy expenditure (PAEE) from processed accelerometer data collected in children and adolescents. Methods: One hundred participants between the ages of 5 and 15 yr completed 12 activity trials that were categorized into five PA types: sedentary, walking, running, light-intensity household activities or games, and moderate-to-vigorous intensity games or sports. During each trial, participants wore an ActiGraph GTIM on the right hip, and (V) Over dotO(2) was measured using the Oxycon Mobile (Viasys Healthcare, Yorba Linda, CA) portable metabolic system. ANNs to predict PA type and PAEE (METs) were developed using the following features: 10th, 25th, 50th, 75th, and 90th percentiles and the lag one autocorrelation. To determine the highest time resolution achievable, we extracted features from 10-, 15-, 20-, 30-, and 60-s windows. Accuracy was assessed by calculating the percentage of windows correctly classified and root mean square en-or (RMSE). Results: As window size increased from 10 to 60 s, accuracy for the PA-type ANN increased from 81.3% to 88.4%. RMSE for the MET prediction ANN decreased from 1.1 METs to 0.9 METs. At any given window size, RMSE values for the MET prediction ANN were 30-40% lower than the conventional regression-based approaches. Conclusions: ANNs can be used to predict both PA type and PAEE in children and adolescents using count data from a single waist mounted accelerometer.
Resumo:
Purpose To evaluate the validity of a uniaxial accelerometer (MTI Actigraph) for measuring physical activity in people with acquired brain injury (ABI) using portable indirect calorimetry (Cosmed K4b(2)) as a criterion measure. Methods Fourteen people with ABI and related gait pattern impairment (age 32 +/- 8 yr) wore an MTI Actigraph that measured activity (counts(.)min-(1)) and a Cosmed K4b(2) that measured oxygen consumption (mL(.)kg(-1.)min(-1)) during four activities: quiet sitting (QS) and comfortable paced (CP), brisk paced (BP), and fast paced (FP) walking. MET levels were predicted from Actigraph counts using a published equation and compared with Cosmed measures. Predicted METs for each of the 56 activity bouts (14 participants X 4 bouts) were classified (light, moderate, vigorous, or very vigorous intensity) and compared with Cosmed-based classifications. Results Repeated-measures ANOVA indicated that walking condition intensities were significantly different (P < 0.05) and the Actigraph detected the differences. Overall correlation between measured and predicted METs was positive, moderate, and significant (r = 0.74). Mean predicted METs were not significantly different from measured for CP and BP, but for FP walking, predicted METs were significantly less than measured (P < 0.05). The Actigraph correctly classified intensity for 76.8% of all activity bouts and 91.5% of light- and moderate-intensity bouts. Conclusions Actigraph counts provide a valid index of activity across the intensities investigated in this study. For light to moderate activity, Actigraph-based estimates of METs are acceptable for group-level analysis and are a valid means of classifying activity intensity. The Actigraph significantly underestimated higher intensity activity, although, in practice, this limitation will have minimal impact on activity measurement of most community-dwelling people with ABI.
Resumo:
This study examined associations between psychosocial factors and physical activity in a group of youth (n = 520). Students completed the Previous Day Physical Activity Recall and a survey of potential determinants of physical activity. Regression analyses of intentions to be physically active revealed that enjoyment and self-efficacy predicted intentions for both males and females. Attitudes predicted moderate to vigorous activity (MVPA), and enjoyment and self-efficacy predicted vigorous activity (VPA) for males. Self-efficacy predicted both MVPA and VPA for females. The findings suggest that intervention programs targeted at youth should include developmentally appropriate activities that are fun and promote physical activity self-efficacy.
Resumo:
Parents and 531 students (46% males, 78% white) completed equivalent questionnaires. Agreement between student and parent responses to questions about hypothesized physical activity (PA) correlates was assessed. Relationships between hypothesized correlates and an objective measure of student's moderate-to-vigorous physical activity (MVPA) in a subset of 177 students were also investigated. Agreement between student and parent ranged from r = .34 to .64 for PA correlates. Spearman correlations between MVPA and PA correlates ranged from –.04 to .21 for student report and –.14 to .32 for parent report, and there were no statistical differences for 8 out of 9 correlations between parent and student. Parents can provide useful data on PA correlates for students in Grades 7–12.
Resumo:
The purpose of this study was to determine the extent to which sport education can provide students with sufficient opportunities for developing moderate- to-vigorous physical activity (MVPA). Nineteen seventh-grade boys (average age = 12.9 yrs.) participated in a 22-lesson season of floor hockey. For all students (both higher and lower skilled), students averaged a total of 31.6 min of MVPA during the season, or 63.2% of lesson time. Further, there was no significant difference according to skill level (33.4 min [Higher] vs. 30.4 min [Lower]), nor were there any significant differences in MVPA levels across the phases of the season.
Resumo:
The purpose of this study was to document the level of physical activity and sedentary behavior in a representative sample of Singaporean adolescents. A random sample of 1,827 secondary school students from six secondary schools (929 boys, 898 girls, mean age 14.9 +/- 1.2 yr) completed the Three-Day Physical Activity Recall (3DPAR) self-report instrument. Approximately 63% of Singaporean high school students met current guidelines requiring 60 min of moderate to vigorous physical activity daily. Just over half (51.6%) met the guideline calling for regular vigorous physical activity. Across all grade levels, boys were consistently more active than girls. More than 70% of Singaporean high school students exceeded the recommended 2 hours per day of electronic media use. Collectively, these findings suggest that a significant proportion of Singaporean adolescents are not sufficiently active and are in need of programs to promote physical activity and decrease sedentary behavior.
Resumo:
In order to effectively measure the physical activity of children, objective monitoring devices must be able to quantify the intermittent and nonlinear movement of free play. The purpose of this study was to investigate the validity of the Computer Science and Applications (CSA) uniaxial accelerometer and the TriTrac-R3D triaxial accelerometer with respect to their ability to measure 8 "free-play" activities of different intensity. The activities ranged from light to very vigorous in intensity and included activities such as throwing and catching, hopscotch, and basketball. Twenty-eight children, ages 9 to 11, wore a CSA and a heart rate monitor while performing the activities. Sixteen children also wore a Tritrac. Counts from the CSA, Tritrac, and heart rates corresponding to the last 3 min of the 5 min spent at each activity were averaged and used in correlation analyses. Across all 8 activities, Tritrac counts were significantly correlated with predicted MET level (r= 0.69) and heart rate (r= 0.73). Correlations between CSA output, predicted MET level (0.43), and heart rate (0.64) were also significant but were lower than those observed for the Tritrac. These data indicate that accelerometers are an appropriate methodology for measuring children's free-play physical activities.
Resumo:
The purpose of this study was to examine the validity of the 3-Day Physical Activity Recall (3DPAR) self-report instrument in a sample of eighth and ninth grade girls (n = 70, 54.3% white, 37.1% African American). Criterion measures of physical activity were derived using the CSA 7164 accelerometer. Participants wore a CSA monitor for 7 consecutive days and completed the self-report physical activity recall for the last 3 of those days. Self-reported total METs, 30-min blocks of MVPA, and 30-min blocks of VPA were all significantly correlated with analogous CSA variables for 7 days (r = 0.35-0.51; P < 0.01) and 3 days (r = 0.27-0.46; P < 0.05) of monitoring. The results indicate that the 3DPAR is a valid instrument for assessing overall, vigorous, and moderate to vigorous physical activity in adolescent girls.
Resumo:
This study examined the tracking of selected measures of physical activity, inactivity, and fitness in a cohort of rural youth. Students (N = 181, 54.7% female, 63.5% African American) completed test batteries during their fifth-(age = 10.7 +/- 0.7 years), sixth-, and seventh-grade years. The Previous Day Physical Activity Recall (PDPAR) was used to assess 30-min blocks of vigorous physical activity (VPA), moderate-to-vigorous physical activity (MVPA), TV watching and other sedentary activities, and estimated energy expenditure (EE). Fitness measures included the PWC 170 cycle ergometer test, strength tests, triceps skinfold thickness, and BMI. Intraclass correlation coefficients (ICCs) for VPA, MVPA, and after-school EE ranged from 0.63 to 0.78. ICCs ranged from 0.49 to 0.71 for measures of inactivity and from 0.78 to 0.82 for the fitness measures. These results indicate that measures of physical activity, inactivity, and physical fitness tend to track during the transition from elementary to middle school.
Resumo:
The unique physical and movement characteristics of children necessitate the development of accelerometer equations and cut points that are population specific. The purpose of this study is to develop an ecologically valid cut point for the Biotrainer Pro monitor that reflects a threshold for moderate-intensity physical activity in elementary school children. A sample of 30 children (ages 8-12) wore a Biotrainer monitor while completing a series of 7 movement tasks (calibration phase) and while participating in an organized group activity (cross-validation phase). Videotapes from each session were processed using a computerized direct-observation technique to provide a criterion measure of physical activity. Analyses involved the use of mixed-model regression and receiver operator characteristic (ROC) curves. The results indicated that a cut point of 4 counts/min provides the optimal balance between the related needs for sensitivity (accurately detecting activity) and specificity (limiting misclassification of activity as inactivity). Results with the cross-validation data demonstrated that this value yielded the best overall kappa (.58) and a high classification agreement (84%) for activity determination. The specificity of 93% demonstrates that the proposed cut point can accurately detect activity; however, the lower sensitivity value of 61% suggests that some minutes of activity might be incorrectly classified as inactivity. The cut point of 4 counts/min provides an ecologically valid cut point to capture physical activity in children using the Biotrainer Pro activity monitor.