985 resultados para ice-marginal features
Resumo:
Estimates for the sedimentation rate of realistic ice crystals at sizes smaller than 100 µm are presented. These calculations, which exploit new results for the capacitance of ice crystals, are compared with laboratory studies and found to be in good agreement. The results highlight a weakness in contemporary ice particle fall speed parametrizations for very small crystals, which can lead to sedimentation rates being overestimated by a factor of two. The theoretical approach applied here may also be useful for calculating the sedimentation rate and mobility of non-spherical aerosol particles.
Resumo:
The performance of a 2D numerical model of flood hydraulics is tested for a major event in Carlisle, UK, in 2005. This event is associated with a unique data set, with GPS surveyed wrack lines and flood extent surveyed 3 weeks after the flood. The Simple Finite Volume (SFV) model is used to solve the 2D Saint-Venant equations over an unstructured mesh of 30000 elements representing channel and floodplain, and allowing detailed hydraulics of flow around bridge piers and other influential features to be represented. The SFV model is also used to corroborate flows recorded for the event at two gauging stations. Calibration of Manning's n is performed with a two stage strategy, with channel values determined by calibration of the gauging station models, and floodplain values determined by optimising the fit between model results and observed water levels and flood extent for the 2005 event. RMS error for the calibrated model compared with surveyed water levels is ~±0.4m, the same order of magnitude as the estimated error in the survey data. The study demonstrates the ability of unstructured mesh hydraulic models to represent important hydraulic processes across a range of scales, with potential applications to flood risk management.
Resumo:
Analysis of the vertical velocity of ice crystals observed with a 1.5micron Doppler lidar from a continuous sample of stratiform ice clouds over 17 months show that the distribution of Doppler velocity varies strongly with temperature, with mean velocities of 0.2m/s at -40C, increasing to 0.6m/s at -10C due to particle growth and broadening of the size spectrum. We examine the likely influence of crystals smaller than 60microns by forward modelling their effect on the area-weighted fall speed, and comparing the results to the lidar observations. The comparison strongly suggests that the concentration of small crystals in most clouds is much lower than measured in-situ by some cloud droplet probes. We argue that the discrepancy is likely due to shattering of large crystals on the probe inlet, and that numerous small particles should not be included in numerical weather and climate model parameterizations.
Resumo:
Mega-scale glacial lineations (MSGLs) are longitudinally aligned corrugations (ridge-groove structures 6-100 km long) in sediment produced subglacially. They are indicators of fast flow and a common signature of ice-stream beds. We develop a qualitative theory that accounts for their formation, and use numerical modelling, and observations of ice-stream beds to provide supporting evidence. Ice in contact with a rough (scale of 10-10(3) m) bedrock surface will mimic the form of the bed. Because of flow acceleration and convergence in ice-stream onset zones, the ice-base roughness elements experience transverse strain, transforming them from irregular bumps into longitudinally aligned keels of ice protruding downwards. Where such keels slide across a soft sedimentary bed, they plough through the sediments, carving elongate grooves, and deforming material up into intervening ridges. This explains MSGLs and has important implications for ice-stream mechanics. Groove ploughing provides the means to acquire new lubricating sediment and to transport large volumes of it downstream. Keels may provide basal drag in the force budget of ice streams, thereby playing a role in flow regulation and stability We speculate that groove ploughing permits significant ice-stream widening, thus facilitating high-magnitude ice discharge.
Resumo:
Large temperature variations on land, in the air, and at the ocean surface, and highly variable flux of ice-rafted debris (IRD) delivered to the North Atlantic Ocean show that rapid climate fluctuations took place during the last glacial period. These quasi-periodic, high-amplitude climate variations followed a sequence of events recognized as a rapid warming, followed by a phase of gradual cooling, and terminating with more rapid cooling and increased flux of IRD to the north Atlantic Ocean. Each cycle lasted ˜1500 years, and was followed by an almost identical sequence. These cycles are referred to as Dansgaard/Oechger cycles (D/O cycles), and approximately every fourth cycle culminated in a more pronounced cooling with a massive discharge of IRD into the north Atlantic Ocean over an interval of ˜500 years. These massive discharges of IRD are known as Heinrich layers. “Heinrich events” are thus characterized as a rapid transfer of IRD from a “source,” the bed of the Laurentide Ice Sheet (LIS), to a “sink,” the North Atlantic.
Resumo:
The active accretional features that have developed along the modern Nile Delta promontories during shoreline retreat are analysed using topographic maps, remote imagery, ground and hydrographic surveys, together providing 15 time-slice maps (1922-2000) at Rosetta and 14 time-slice maps (1909-2000) at Damietta. Small double sandy spits developed and persisted at Rosetta between 1986 and 1991. At Damietta, a much larger single spit, 9 km long, formed approximately east of the mouth of the Damietta Nile branch between 1955 and 1972, although its source has now been depleted. Both the Rosetta and Damietta inlets are associated with submerged mouth bars that accumulated prior to the damming of the Nile, but that continue to contribute to local sedimentation problems, particularly at Rosetta. The development of the active accretional features along the Nile promontories reflects a combination of factors including sediment availability, transport pathways from source areas, a decrease in the magnitude of Nile flood discharges, as well as the impact of protective structures at the river mouths.
Resumo:
Samples of glacial till deposited since the Little Ice Age (LIA) maximum by two glaciers, North Bogbre at Svartisen and Corneliussen-breen at Okstindan, northern Norway, were obtained from transects running from the current glacier snout to the LIA (c. AD 1750) limit. The samples were analysed to determine their sediment magnetic properties, which display considerable variability. Significant trends in some magnetic parameters are evident with distance from the glacier margin and hence length of subaerial exposure. Magnetic susceptibility (X) decreases away from the contemporary snout, perhaps due to the weathering of ferrimagnetic minerals into antiferromagnetic forms, although this trend is generally not statistically significant. Trends in the ratios of soft IRM/hard IRM which are statistically significant support this hypothesis, suggesting that antiferromagnetic minerals are increasing relative to ferrimagnetic minerals towards the LIA maximum. Backfield ratios (IRM -100 mT/SIRM) also display a significant and strong trend towards magnetically harder behaviour with proximity to the LIA maximum. Thus, by employing a chronosequence approach, it may be possible to use sediment magnetics data as a tool for reconstructing glacier retreat in areas where more traditional techniques, such as lichenometry, are not applicable.