912 resultados para human urine analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The promise of metabonomics, a new "omics" technique, to validate Chinese medicines and the compatibility of Chinese formulas has been appreciated. The present study was undertaken to explore the excretion pattern of low molecular mass metabolites in the male Wistar-derived rat model of kidney yin deficiency induced with thyroxine and reserpine as well as the therapeutic effect of Liu Wei Di Huang Wan (LW) and its separated prescriptions, a classic traditional Chinese medicine formula for treating kidney yin deficiency in China. The study utilized ultra-performance liquid chromatography/electrospray ionization synapt high definition mass spectrometry (UPLC/ESI-SYNAPT-HDMS) in both negative and positive electrospray ionization (ESI). At the same time, blood biochemistry was examined to identify specific changes in the kidney yin deficiency. Distinct changes in the pattern of metabolites, as a result of daily administration of thyroxine and reserpine, were observed by UPLC-HDMS combined with a principal component analysis (PCA). The changes in metabolic profiling were restored to their baseline values after treatment with LW according to the PCA score plots. Altogether, the current metabonomic approach based on UPLC-HDMS and orthogonal projection to latent structures discriminate analysis (OPLS-DA) indicated 20 ions (14 in the negative mode, 8 in the positive mode, and 2 in both) as "differentiating metabolites".

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interferon gamma (IFNγ) is a key Th1 cytokine, with a principal role in the immune response against intracellular organisms such as Chlamydia. Along with being responsible for significant morbidity in human populations, Chlamydia is also responsible for wide spread infection and disease in many animal hosts, with reports that many Australian koala subpopulations are endemically infected. An understanding of the role played by IFNγ in koala chlamydial diseases is important for the establishment of better prophylactic and therapeutic approaches against chlamydial infection in this host. A limited number of IFNγ sequences have been published from marsupials and no immune reagents to measure expression have been developed. Through preliminary analysis of the koala transcriptome, we have identified the full coding sequence of the koala IFNγ gene. Transcripts were identified in spleen and lymph node tissue samples. Phylogenetic analysis demonstrated that koala IFNγ is closely related to other marsupial IFNγ sequences and more distantly related to eutherian mammals. To begin to characterise the role of this important cytokine in the koala's response to chlamydial infection, we developed a quantitative real time PCR assay and applied it to a small cohort of koalas with and without active chlamydial disease, revealing significant differences in expression patterns between the groups. Description of the IFNγ sequence from the koala will not only assist in understanding this species' response to its most important pathogen but will also provide further insight into the evolution of the marsupial immune system

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advances in Information and Communication Technologies have the potential to improve many facets of modern healthcare service delivery. The implementation of electronic health records systems is a critical part of an eHealth system. Despite the potential gains, there are several obstacles that limit the wider development of electronic health record systems. Among these are the perceived threats to the security and privacy of patients’ health data, and a widely held belief that these cannot be adequately addressed. We hypothesise that the major concerns regarding eHealth security and privacy cannot be overcome through the implementation of technology alone. Human dimensions must be considered when analysing the provision of the three fundamental information security goals: confidentiality, integrity and availability. A sociotechnical analysis to establish the information security and privacy requirements when designing and developing a given eHealth system is important and timely. A framework that accommodates consideration of the legislative requirements and human perspectives in addition to the technological measures is useful in developing a measurable and accountable eHealth system. Successful implementation of this approach would enable the possibilities, practicalities and sustainabilities of proposed eHealth systems to be realised.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND & AIMS Metabolomics is comprehensive analysis of low-molecular-weight endogenous metabolites in a biological sample. It could enable mapping of perturbations of early biochemical changes in diseases and hence provide an opportunity to develop predictive biomarkers that could provide valuable insights into the mechanisms of diseases. The aim of this study was to elucidate the changes in endogenous metabolites and to phenotype the metabolic profiling of d-galactosamine (GalN)-inducing acute hepatitis in rats by UPLC-ESI MS. METHODS The systemic biochemical actions of GalN administration (ip, 400 mg/kg) have been investigated in male wistar rats using conventional clinical chemistry, liver histopathology and metabolomic analysis of UPLC- ESI MS of urine. The urine was collected predose (-24 to 0 h) and 0-24, 24-48, 48-72, 72-96 h post-dose. Mass spectrometry of the urine was analysed visually and via conjunction with multivariate data analysis. RESULTS Results demonstrated that there was a time-dependent biochemical effect of GalN dosed on the levels of a range of low-molecular-weight metabolites in urine, which was correlated with developing phase of the GalN-inducing acute hepatitis. Urinary excretion of beta-hydroxybutanoic acid and citric acid was decreased following GalN dosing, whereas that of glycocholic acid, indole-3-acetic acid, sphinganine, n-acetyl-l-phenylalanine, cholic acid and creatinine excretion was increased, which suggests that several key metabolic pathways such as energy metabolism, lipid metabolism and amino acid metabolism were perturbed by GalN. CONCLUSION This metabolomic investigation demonstrates that this robust non-invasive tool offers insight into the metabolic states of diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Migraine is a common neurological disease with a complex genetic aetiology. The disease affects ~12% of the Caucasian population and females are three times more likely than males to be diagnosed. In an effort to identify loci involved in migraine susceptibility, we performed a pedigree-based genome-wide association study of the isolated population of Norfolk Island, which has a high prevalence of migraine. This unique population originates from a small number of British and Polynesian founders who are descendents of the Bounty mutiny and forms a very large multigenerational pedigree (Bellis et al.; Human Genetics, 124(5):543-5542, 2008). These population genetic features may facilitate disease gene mapping strategies (Peltonen et al.; Nat Rev Genet, 1(3):182-90, 2000. In this study, we identified a high heritability of migraine in the Norfolk Island population (h (2) = 0.53, P = 0.016). We performed a pedigree-based GWAS and utilised a statistical and pathological prioritisation approach to implicate a number of variants in migraine. An SNP located in the zinc finger protein 555 (ZNF555) gene (rs4807347) showed evidence of statistical association in our Norfolk Island pedigree (P = 9.6 × 10(-6)) as well as replication in a large independent and unrelated cohort with >500 migraineurs. In addition, we utilised a biological prioritisation to implicate four SNPs, in within the ADARB2 gene, two SNPs within the GRM7 gene and a single SNP in close proximity to a HTR7 gene. Association of SNPs within these neurotransmitter-related genes suggests a disrupted serotoninergic system that is perhaps specific to the Norfolk Island pedigree, but that might provide clues to understanding migraine more generally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of improving systemic treatment of breast cancers is to evolve from treating every patient with non-specific cytotoxic chemotherapy/hormonal therapy, to a more individually-tailored direct treatment. Although anatomic staging and histological grade are important prognostic factors, they often fail to predict the clinical course of this disease. This study aimed to develop a gene expression profile associated with breast cancers of differing grades. We extracted mRNA from FFPE archival breast IDC tissue samples (Grades I–III), including benign tumours. Affymetrix GeneChip� Human Genome U133 Plus 2.0 Arrays were used to determine gene expression profiles and validated by Q-PCR. IHC was used to detect the AXIN2 protein in all tissues. From the array data, an independent group t-test revealed that 178 genes were significantly (P B 0.01) differentially expressed between three grades of malignant breast tumours when compared to benign tissues. From these results, eight genes were significantly differentially expressed in more than one comparison group and are involved in processes implicated in breast cancer development and/or progression. The two most implicated candidates genes were CLD10 and ESPTI1 as their gene expression profile from the microarray analysis was replicated in Q-PCR analyses of the original tumour samples as well as in an extended population. The IHC revealed a significant association between AXIN2 protein expression and ER status. It is readily acknowledged and established that significant differences exist in gene expression between different cancer grades. Expansion of this approach may lead to an improved ability to discriminate between cancer grade and other pathological factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Migraine is a painful and debilitating, neurovascular disease. Current migraine head pain treatments work with differing efficacies in migraineurs. The opioid system plays an important role in diverse biological functions including analgesia, drug response and pain reduction. The A118G single nucleotide polymorphism (SNP) in exon 1 of the μ-opioid receptor gene (OPRM1) has been associated with elevated pain responses and decreased pain threshold in a variety of populations. The aim of the current preliminary study was to test whether genotypes of the OPRM1 A118G SNP are associated with head pain severity in a clinical cohort of female migraineurs. This was a preliminary study to determine whether genotypes of the OPRM1 A118G SNP are associated with head pain severity in a clinical cohort of female migraineurs. A total of 153 chronic migraine with aura sufferers were assessed for migraine head pain using the Migraine Disability Assessment Score instrument and classified into high and low pain severity groups. DNA was extracted and genotypes obtained for the A118G SNP. Logistic regression analysis adjusting for age effects showed the A118G SNP of the OPRM1 gene to be significantly associated with migraine pain severity in the test population (P = 0.0037). In particular, G118 allele carriers were more likely to be high pain sufferers compared to homozygous carriers of the A118 allele (OR = 3.125, 95 % CI = 1.41, 6.93, P = 0.0037). These findings suggest that A118G genotypes of the OPRM1 gene may influence migraine-associated head pain in females. Further investigations are required to fully understand the effect of this gene variant on migraine head pain including studies in males and in different migraine subtypes, as well as in response to head pain medication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction Gene expression profiling has enabled us to demonstrate the heterogeneity of breast cancers. The potential of a tumour to grow and metastasise is partly dependant on its ability to initiate angiogenesis or growth and remodelling of new blood vessels, usually from a pre-existing vascular network, to ensure delivery of oxygen, nutrients, and growth factors to rapidly dividing transformed cells along with access to the systemic circulation. Cell–cell signalling of semaphorin ligands through interaction with their plexin receptors is important for the homeostasis and morphogenesis of many tissues and has been widely studied for a role in neural connectivity, cancer, cell migration and immune responses. This study investigated the role of four semaphorin/plexin signalling genes in human breast cancers in vivo and in vitro. Materials and methods mRNA was extracted from formalin fixed paraffin embedded archival breast invasive ductal carcinoma tissue samples of progressive grades (grades I–III) and compared to tissue from benign tumours. Gene expression profiles were determined by microarray using the Affymetrix GeneChip® Human Genome U133 Plus 2.0 Arrays and validated by Q-PCR using a Corbett RotorGene 6000. Following validation, the gene expression profile of the identified targets was correlated with those of the human breast cancer cell lines MCF-7 and MDA-MD-231. Results The array data revealed that 888 genes were found to be significantly (p ≤ 0.05) differentially expressed between grades I and II tumours and 563 genes between grade III and benign tumours. From these genes, we identified four genes involved in semaphorin–plexin signalling including SEMA4D which has previously been identified as being involved in increased angiogenesis in breast cancers, and three other genes, SEMA4F, PLXNA2 and PLXNA3, which in the literature were associated with tumourigenesis, but not directly in breast tumourigenesis. The microarray analysis revealed that SEMA4D was significantly (P = 0.0347) down-regulated in the grade III tumours compared to benign tumours; SEMA4F, was significantly (P = 0.0159) down-regulated between grades I and II tumours; PLXNA2 was significantly (P = 0.036) down-regulated between grade III and benign tumours and PLXNA3 significantly (P = 0.042) up-regulated between grades I and II tumours. Gene expression of SEMA4D was validated using Q-PCR, demonstrating the same expression profile in both data sets. When the sample set was increased to incorporate more cases, SEMA4D continued to follow the same expression profile, including statistical significance for the differences observed and small standard deviations. In vitro the same pattern was present where expression for SEMA4D was significantly higher in MDA-MB-231 cells when compared to MCF-7 cells. The expression of SEMA4F, PLXNA2 and PLXNA3 could not be validated using Q-PCR, however in vitro analysis of these three genes revealed that both SEMA4F and PLXNA3 followed the microarray trend in expression, although they did not reach significance. In contrast, PLXNA2 demonstrated statistical significance and was in concordance with the literature. Discussion We, and others, have proposed SEMA4D to be a gene with a potentially protective effect in benign tumours that contributes to tumour growth and metastatic suppression. Previous data supports a role for SEMA4F as a tumour suppressor in the peripheral nervous system but our data seems to indicate that the gene is involved in tumour progression in breast cancer. Our in vitro analysis of PLXNA2 revealed that the gene has higher expression in more aggressive breast cancer cell types. Finally, our in vitro analysis on PLXNA3 also suggest that this gene may have some form of growth suppressive role in breast cancer, in addition to a similar role for the gene previously reported in ovarian cancer. From the data obtained in this study, SEMA4D may have a role in more aggressive and potentially metastatic breast tumours. Conclusions Semaphorins and their receptors, the plexins, have been implicated in numerous aspects of neural development, however their expression in many other epithelial tissues suggests that the semaphorin–plexin signalling system also contributes to blood vessel growth and development. These findings warrant further investigation of the role of semaphorins and plexins and their role in normal and tumour-induced angiogenesis in vivo and in vitro. This may represent a new front of attack in anti-angiogenic therapies of breast and other cancers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The calcium-activated potassium ion channel gene (KCNN3) is located in the vicinity of the familial hemiplegic migraine type 2 locus on chromosome 1q21.3. This gene is expressed in the central nervous system and plays a role in neural excitability. Previous association studies have provided some, although not conclusive, evidence for involvement of this gene in migraine susceptibility. To elucidate KCNN3 involvement in migraine, we performed gene-wide SNP genotyping in a high-risk genetic isolate from Norfolk Island, a population descended from a small number of eighteenth century Isle of Man ‘Bounty Mutineer’ and Tahitian founders. Phenotype information was available for 377 individuals who are related through the single, well-defined Norfolk pedigree (96 were affected: 64 MA, 32 MO). A total of 85 SNPs spanning the KCNN3 gene were genotyped in a sub-sample of 285 related individuals (76 affected), all core members of the extensive Norfolk Island ‘Bounty Mutineer’ genealogy. All genotyping was performed using the Illumina BeadArray platform. The analysis was performed using the statistical program SOLAR v4.0.6 assuming an additive model of allelic effect adjusted for the effects of age and sex. Haplotype analysis was undertaken using the program HAPLOVIEW v4.0. A total of four intronic SNPs in the KCNN3 gene displayed significant association (P < 0.05) with migraine. Two SNPs, rs73532286 and rs6426929, separated by approximately 0.1 kb, displayed complete LD (r 2 = 1.00, D′ = 1.00, D′ 95% CI = 0.96–1.00). In all cases, the minor allele led to a decrease in migraine risk (beta coefficient = 0.286–0.315), suggesting that common gene variants confer an increased risk of migraine in the Norfolk pedigree. This effect may be explained by founder effect in this genetic isolate. This study provides evidence for association of variants in the KCNN3 ion channel gene with migraine susceptibility in the Norfolk genetic isolate with the rarer allelic variants conferring a possible protective role. This the first comprehensive analysis of this potential candidate gene in migraine and also the first study that has utilised the unique Norfolk Island large pedigree isolate to implicate a specific migraine gene. Studies of additional variants in KCNN3 in the Norfolk pedigree are now required (e.g. polyglutamine variants) and further analyses in other population data sets are required to clarify the association of the KCNN3 gene and migraine risk in the general outbred population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a common cause of neurological disability in young adults. The disease generally manifests in early to middle adulthood and causes various neurological deficits. Autoreactive T lymphocytes and their associated antigens have long been presumed important features of MS pathogenesis. The Protein tyrosine phosphatase receptor type C gene (PTPRC) encodes the T-cell receptor CD45. Variations within PTPRC have been previously associated with diseases of autoimmune origin such as type 1 diabetes mellitus and Graves' disease. We set out to investigate two variants within the PTPRC gene, C77G and C772T in subjects with MS and matched healthy controls to determine whether significant differences exist in these markers in an Australian population. We employed high resolution melt analysis (HRM) and restriction length polymorphism (RFLP) techniques to determine genotypic and allelic frequencies. Our study found no significant difference between frequencies for PTPRC C77G by either genotype (Χ2 = 0.65, P = 0.72) or allele (Χ2 = 0.48, P = 0.49). Similarly, we did not find evidence to suggest an association between PTPRC C772T by genotype (Χ2 = 1.06, P = 0.59) or allele (Χ2 = 0.20, P = 0.66). Linkage disequilibrium (LD) analysis showed strong linkage disequilibrium between the two tested markers (D' = 0.9970, SD = 0.0385). This study reveals no evidence to suggest that these markers are associated with MS in the tested Australian Caucasian population. Although the PTPRC gene has a significant role in regulating CD4+ and CD8+ autoreactive T-cells, interferon-beta responsiveness, and potentially other important processes, our study does not support a role for the two tested variants of this gene in MS susceptibility in the Australian population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE(S): An individual's risk of developing cardiovascular disease (CVD) is influenced by genetic factors. This study focussed on mapping genetic loci for CVD-risk traits in a unique population isolate derived from Norfolk Island. METHODS: This investigation focussed on 377 individuals descended from the population founders. Principal component analysis was used to extract orthogonal components from 11 cardiovascular risk traits. Multipoint variance component methods were used to assess genome-wide linkage using SOLAR to the derived factors. A total of 285 of the 377 related individuals were informative for linkage analysis. RESULTS: A total of 4 principal components accounting for 83% of the total variance were derived. Principal component 1 was loaded with body size indicators; principal component 2 with body size, cholesterol and triglyceride levels; principal component 3 with the blood pressures; and principal component 4 with LDL-cholesterol and total cholesterol levels. Suggestive evidence of linkage for principal component 2 (h(2) = 0.35) was observed on chromosome 5q35 (LOD = 1.85; p = 0.0008). While peak regions on chromosome 10p11.2 (LOD = 1.27; p = 0.005) and 12q13 (LOD = 1.63; p = 0.003) were observed to segregate with principal components 1 (h(2) = 0.33) and 4 (h(2) = 0.42), respectively. CONCLUSION(S): This study investigated a number of CVD risk traits in a unique isolated population. Findings support the clustering of CVD risk traits and provide interesting evidence of a region on chromosome 5q35 segregating with weight, waist circumference, HDL-c and total triglyceride levels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Norfolk Island is a human genetic isolate, possessing unique population characteristics that could be utilized for complex disease gene localization. Our intention was to evaluate the extent and strength of linkage disequilibrium (LD) in the Norfolk isolate by investigating markers within Xq13.3 and the NOS2A gene encoding the inducible nitric oxide synthase. A total of six microsatellite markers spanning approximately 11 Mb were assessed on chromosome Xq13.3 in a group of 56 men from Norfolk Island. Additionally, three single nucleotide polymorphisms (SNPs) localizing to the NOS2A gene were analyzed in a subset of the complex Norfolk pedigree. With the exception of two of the marker pairs, one of which is the most distantly spaced marker, all the Xq13.3 marker pairs were found to be in significant LD indicating that LD extends up to 9.5-11.5 Mb in the Norfolk Island population. Also, all SNPs studied showed significant LD in both Norfolk Islanders and Australian Caucasians, with two of the marker pairs in complete LD in the Norfolk population only. The Norfolk Island study population possesses a unique set of characteristics including founder effect, geographical isolation, exhaustive genealogical information and phenotypic data of use to cardiovascular disease risk traits. With LD extending up to 9.5-11 Mb, the Norfolk isolate should be a powerful resource for the localization of complex disease genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Migraine is a common debilitating primary headache disorder with significant mental, physical and social health implications. The brain neurotransmitter 5-hydroxytryptamine (5-HT; serotonin) is involved in nociceptive pathways and has been implicated in the pathophysiology of migraine. With few genetic studies investigating biosynthetic and metabolic enzymes governing the rate of 5-HT activity and their relationship to migraine, it was the objective of this study to assess genetic variants within the human tryptophan hydroxylase (TPH), amino acid decarboxylase (AADC) and monoamine oxidase A (MAOA) genes in migraine susceptibility. This objective was undertaken using a high-throughput DNA pooling experimental design, which proved to be a very accurate, sensitive and specific method of estimating allele frequencies for single nucleotide polymorphism, insertion deletion and variable number tandem repeat loci. Application of DNA pooling to a wide array of genetic loci provides greater scope in the assessment of population-based genetic association study designs. Despite the application of this high-throughput genotyping method, negative results from the two-stage DNA pooling design used to screen loci within the TPH, AADC and MAOA genes did not support their role in migraine susceptibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To examine gene-expression patterning in late-stage breast cancer biopsies, we used a microdissection technique to separate tumor from the surrounding breast tissue or stroma. A DD-PCR protocol was then used to amplify expressed products, which were resolved using PAGE and used as probe to hybridize with representative human arrays and cDNA libraries. The probe derived from the tumor–stroma comparison was hybridized with a gene array and an arrayed cDNA library derived from a GCT of bone; 21 known genes or expressed sequence tags were detected, of which 17 showed differential expression. These included factors associated with epithelial to mesenchymal transition (vimentin), the cargo selection protein (TIP47) and the signal transducer and activator of transcription (STAT3). Northern blot analysis was used to confirm those genes also expressed by representative breast cancer cell lines. Notably, 6 genes of unknown function were restricted to tumor while the majority of stroma-associated genes were known. When applied to transformed breast cancer cell lines (MDA-MB-435 and T47D) that are known to have different metastatic potential, DD array analysis revealed a further 20 genes; 17 of these genes showed differential expression. Use of microdissection and the DD-PCR array protocol allowed us to identify factors whose localized expression within the breast may play a role in abnormal breast development or breast carcinogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Essential hypertension is a common multifactorial trait that results in a significantly increased risk for heart attack and stroke. The condition has a genetic basis, although at present the number of genes is unknown. In order to identify such genes, we are utilising a linkage scanning approach using microsatellite markers and affected sibships. Here we provide evidence for the location of at least one hypertension susceptibility locus on chromosome 17. Analysis of 177 affected sibpairs gave evidence for significant excess allele sharing to D17S949 (SPLINK: P=0.0029; MAPMAKER SIBS: P=0.0033; ASPEX: P=0.0061; GENEHUNTER: P=0.0096; ANALYZE (SIBPAIR): P=0.0025) on 17q22–24, with significant allele sharing also indicated for an additional marker, D17S799 (SPLINK: P=0.025; MAPMAKER SIBS: P= 0.025) located close to the centromere. Since these two genomic regions are well separated, our results indicate that there may be more than one chromosome 17 locus affecting human blood pressure. Moreover, further investigation of this chromosome, utilizing a polymorphism within the promoter of the iNOS candidate gene, NOS2A, revealed both increased allele sharing among sibpairs (SPLINK: P=0.02; ASPEX: P=0.00004) and positive association (P= 0.034) of NOS2A to essential hypertension. Hence these results indicate that chromosome 17 and, more specifically, the NOS2A gene may play a role in human essential hypertension.