800 resultados para heuristic algorithm
Resumo:
The Car Rental Salesman Problem (CaRS) is a variant of the classical Traveling Salesman Problem which was not described in the literature where a tour of visits can be decomposed into contiguous paths that may be performed in different rental cars. The aim is to determine the Hamiltonian cycle that results in a final minimum cost, considering the cost of the route added to the cost of an expected penalty paid for each exchange of vehicles on the route. This penalty is due to the return of the car dropped to the base. This paper introduces the general problem and illustrates some examples, also featuring some of its associated variants. An overview of the complexity of this combinatorial problem is also outlined, to justify their classification in the NPhard class. A database of instances for the problem is presented, describing the methodology of its constitution. The presented problem is also the subject of a study based on experimental algorithmic implementation of six metaheuristic solutions, representing adaptations of the best of state-of-the-art heuristic programming. New neighborhoods, construction procedures, search operators, evolutionary agents, cooperation by multi-pheromone are created for this problem. Furtermore, computational experiments and comparative performance tests are conducted on a sample of 60 instances of the created database, aiming to offer a algorithm with an efficient solution for this problem. These results will illustrate the best performance reached by the transgenetic algorithm in all instances of the dataset
Resumo:
The Quadratic Minimum Spanning Tree Problem (QMST) is a version of the Minimum Spanning Tree Problem in which, besides the traditional linear costs, there is a quadratic structure of costs. This quadratic structure models interaction effects between pairs of edges. Linear and quadratic costs are added up to constitute the total cost of the spanning tree, which must be minimized. When these interactions are restricted to adjacent edges, the problem is named Adjacent Only Quadratic Minimum Spanning Tree (AQMST). AQMST and QMST are NP-hard problems that model several problems of transport and distribution networks design. In general, AQMST arises as a more suitable model for real problems. Although, in literature, linear and quadratic costs are added, in real applications, they may be conflicting. In this case, it may be interesting to consider these costs separately. In this sense, Multiobjective Optimization provides a more realistic model for QMST and AQMST. A review of the state-of-the-art, so far, was not able to find papers regarding these problems under a biobjective point of view. Thus, the objective of this Thesis is the development of exact and heuristic algorithms for the Biobjective Adjacent Only Quadratic Spanning Tree Problem (bi-AQST). In order to do so, as theoretical foundation, other NP-hard problems directly related to bi-AQST are discussed: the QMST and AQMST problems. Bracktracking and branch-and-bound exact algorithms are proposed to the target problem of this investigation. The heuristic algorithms developed are: Pareto Local Search, Tabu Search with ejection chain, Transgenetic Algorithm, NSGA-II and a hybridization of the two last-mentioned proposals called NSTA. The proposed algorithms are compared to each other through performance analysis regarding computational experiments with instances adapted from the QMST literature. With regard to exact algorithms, the analysis considers, in particular, the execution time. In case of the heuristic algorithms, besides execution time, the quality of the generated approximation sets is evaluated. Quality indicators are used to assess such information. Appropriate statistical tools are used to measure the performance of exact and heuristic algorithms. Considering the set of instances adopted as well as the criteria of execution time and quality of the generated approximation set, the experiments showed that the Tabu Search with ejection chain approach obtained the best results and the transgenetic algorithm ranked second. The PLS algorithm obtained good quality solutions, but at a very high computational time compared to the other (meta)heuristics, getting the third place. NSTA and NSGA-II algorithms got the last positions
Resumo:
Due to great difficulty of accurate solution of Combinatorial Optimization Problems, some heuristic methods have been developed and during many years, the analysis of performance of these approaches was not carried through in a systematic way. The proposal of this work is to make a statistical analysis of heuristic approaches to the Traveling Salesman Problem (TSP). The focus of the analysis is to evaluate the performance of each approach in relation to the necessary computational time until the attainment of the optimal solution for one determined instance of the TSP. Survival Analysis, assisted by methods for the hypothesis test of the equality between survival functions was used. The evaluated approaches were divided in three classes: Lin-Kernighan Algorithms, Evolutionary Algorithms and Particle Swarm Optimization. Beyond those approaches, it was enclosed in the analysis, a memetic algorithm (for symmetric and asymmetric TSP instances) that utilizes the Lin-Kernighan heuristics as its local search procedure
Resumo:
This work performs an algorithmic study of optimization of a conformal radiotherapy plan treatment. Initially we show: an overview about cancer, radiotherapy and the physics of interaction of ionizing radiation with matery. A proposal for optimization of a plan of treatment in radiotherapy is developed in a systematic way. We show the paradigm of multicriteria problem, the concept of Pareto optimum and Pareto dominance. A generic optimization model for radioterapic treatment is proposed. We construct the input of the model, estimate the dose given by the radiation using the dose matrix, and show the objective function for the model. The complexity of optimization models in radiotherapy treatment is typically NP which justifyis the use of heuristic methods. We propose three distinct methods: MOGA, MOSA e MOTS. The project of these three metaheuristic procedures is shown. For each procedures follows: a brief motivation, the algorithm itself and the method for tuning its parameters. The three method are applied to a concrete case and we confront their performances. Finally it is analyzed for each method: the quality of the Pareto sets, some solutions and the respective Pareto curves
Resumo:
Nonogram is a logical puzzle whose associated decision problem is NP-complete. It has applications in pattern recognition problems and data compression, among others. The puzzle consists in determining an assignment of colors to pixels distributed in a N M matrix that satisfies line and column constraints. A Nonogram is encoded by a vector whose elements specify the number of pixels in each row and column of a figure without specifying their coordinates. This work presents exact and heuristic approaches to solve Nonograms. The depth first search was one of the chosen exact approaches because it is a typical example of brute search algorithm that is easy to implement. Another implemented exact approach was based on the Las Vegas algorithm, so that we intend to investigate whether the randomness introduce by the Las Vegas-based algorithm would be an advantage over the depth first search. The Nonogram is also transformed into a Constraint Satisfaction Problem. Three heuristics approaches are proposed: a Tabu Search and two memetic algorithms. A new function to calculate the objective function is proposed. The approaches are applied on 234 instances, the size of the instances ranging from 5 x 5 to 100 x 100 size, and including logical and random Nonograms
Resumo:
The Hiker Dice was a game recently proposed in a software designed by Mara Kuzmich and Leonardo Goldbarg. In the game a dice is responsible for building a trail on an n x m board. As the dice waits upon a cell on the board, it prints the side that touches the surface. The game shows the Hamiltonian Path Problem Simple Maximum Hiker Dice (Hidi-CHS) in trays Compact Nth , this problem is then characterized by looking for a Hamiltonian Path that maximize the sum of marked sides on the board. The research now related, models the problem through Graphs, and proposes two classes of solution algorithms. The first class, belonging to the exact algorithms, is formed by a backtracking algorithm planed with a return through logical rules and limiting the best found solution. The second class of algorithms is composed by metaheuristics type Evolutionary Computing, Local Ramdomized search and GRASP (Greed Randomized Adaptative Search). Three specific operators for the algorithms were created as follows: restructuring, recombination with two solutions and random greedy constructive.The exact algorithm was teste on 4x4 to 8x8 boards exhausting the possibility of higher computational treatment of cases due to the explosion in processing time. The heuristics algorithms were tested on 5x5 to 14x14 boards. According to the applied methodology for evaluation, the results acheived by the heuristics algorithms suggests a better performance for the GRASP algorithm
Resumo:
This paper introduces a new variant of the Traveling Car Renter Problem, named Prizecollecting Traveling Car Renter Problem. In this problem, a set of vertices, each associated with a bonus, and a set of vehicles are given. The objective is to determine a cycle that visits some vertices collecting, at least, a pre-defined bonus, and minimizing the cost of the tour that can be traveled with different vehicles. A mathematical formulation is presented and implemented in a solver to produce results for sixty-two instances. The proposed problem is also subject of an experimental study based on the algorithmic application of four metaheuristics representing the best adaptations of the state of the art of the heuristic programming.We also provide new local search operators which exploit the neighborhoods of the problem, construction procedures and adjustments, created specifically for the addressed problem. Comparative computational experiments and performance tests are performed on a sample of 80 instances, aiming to offer a competitive algorithm to the problem. We conclude that memetic algorithms, computational transgenetic and a hybrid evolutive algorithm are competitive in tests performed
Resumo:
In this paper we deal with the problem of feature selection by introducing a new approach based on Gravitational Search Algorithm (GSA). The proposed algorithm combines the optimization behavior of GSA together with the speed of Optimum-Path Forest (OPF) classifier in order to provide a fast and accurate framework for feature selection. Experiments on datasets obtained from a wide range of applications, such as vowel recognition, image classification and fraud detection in power distribution systems are conducted in order to asses the robustness of the proposed technique against Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and a Particle Swarm Optimization (PSO)-based algorithm for feature selection.
Resumo:
We consider the problem of blocking response surface designs when the block sizes are prespecified to control variation efficiently and the treatment set is chosen independently of the block structure. We show how the loss of information due to blocking is related to scores defined by Mead and present an interchange algorithm based on scores to improve a given blocked design. Examples illustrating the performance of the algorithm are given and some comparisons with other designs are made. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
We re-evaluated the larval support for families within majoids using the Wilcoxon signed-rank test with emphasis on Inachoididae. To accomplish our objectives, we added 10 new taxa, two of which are traditionally assigned to the family of special interest, to a previous larval database for majoids, and re-appraised the larval characters used in earlier studies. Phylogenetic analysis was performed with PAUP* using the heuristic search with 50 replicates or the branch-and-bound algorithm when possible. Multi-state transformation series were considered unordered; initially characters were equally weighted followed by successive weighting, and trees were rooted at the Oregoniidae node. Ten different topological constraints were enforced for families to evaluate tree length under the assumption of monophyly for each taxonomic entity. Our results showed that the tree length of most constrained topologies was not considerably greater than that of unconstrained analysis in which most families nested as paraphyletic taxa. This may indicate that the present larval database does not provide strong support for paraphyly of the taxa in question. For Inachoididae, although the Wilcoxon signed-rank test rejected a significant difference between unconstrained and constrained cladograms, we were unable to provide a single synapomorphy for this clade. Except for the conflicting position of Leurocyclus and Stenorhynchus, the two clades correspond to the traditional taxonomic arrangement. Among inachoidids, the clade (Anasimus (Paradasygyius (Collodes + Pyromaia))) is supported, whereas for inachids, the clade (Inachus (Macropodia + Achaeus)) is one of the most supported clades within majids. As often stated, only additional characters will provide a better test for the monophyly of Inachoididae and other families within Majoidea.
Resumo:
A novel common Tabu algorithm for global optimizations of engineering problems is presented. The robustness and efficiency of the presented method are evaluated by using standard mathematical functions and hy solving a practical engineering problem. The numerical results show that the proposed method is (i) superior to the conventional Tabu search algorithm in robustness, and (ii) superior to the simulated annealing algorithm in efficiency. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
An algorithm for deriving a continued fraction that corresponds to two series expansions simultaneously, when there are zero coefficients in one or both series, is given. It is based on using the Q-D algorithm to derive the corresponding fraction for two related series, and then transforming it into the required continued fraction. Two examples are given. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The study of robust design methodologies and techniques has become a new topical area in design optimizations in nearly all engineering and applied science disciplines in the last 10 years due to inevitable and unavoidable imprecision or uncertainty which is existed in real word design problems. To develop a fast optimizer for robust designs, a methodology based on polynomial chaos and tabu search algorithm is proposed. In the methodology, the polynomial chaos is employed as a stochastic response surface model of the objective function to efficiently evaluate the robust performance parameter while a mechanism to assign expected fitness only to promising solutions is introduced in tabu search algorithm to minimize the requirement for determining robust metrics of intermediate solutions. The proposed methodology is applied to the robust design of a practical inverse problem with satisfactory results.
Resumo:
In this work, genetic algorithms concepts along with a rotamer library for proteins side chains are used to optimize the tertiary structure of the hydrophobic core of Cytochrome b(562) starting from the known PDB structure of its backbone which is kept fixed while the side chains of the hydrophobic core are allowed to adopt the conformations present in the rotamer library. The atoms of the side chains forming the core interact via van der Waals energy. Besides the prediction of the native core structure, it is also suggested a set of different amino acid sequences for this core. Comparison between these new cores and the native are made in terms of their volumes, van der Waals energies values and the numbers of contacts made by the side chains forming the cores. This paper proves that genetic algorithms area efficient to design new sequence for the protein core. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A new version of the relaxation algorithm is proposed in order to obtain the stationary ground-state solutions of nonlinear Schrodinger-type equations, including the hyperbolic solutions. In a first example, the method is applied to the three-dimensional Gross-Pitaevskii equation, describing a condensed atomic system with attractive two-body interaction in a non-symmetrical trap, to obtain results for the unstable branch. Next, the approach is also shown to be very reliable and easy to be implemented in a non-symmetrical case that we have bifurcation, with nonlinear cubic and quintic terms. (c) 2006 Elsevier B.V. All rights reserved.