807 resultados para green gel
Resumo:
The separation of mixtures of proteins by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) is a technique that is widely used—and, indeed, this technique underlies many of the assays and analyses that are described in this book. While SDS-PAGE is routine in many labs, a number of issues require consideration before embarking on it for the first time. We felt, therefore, that in the interest of completeness of this volume, a brief chapter describing the basics of SDS-PAGE would be helpful. Also included in this chapter are protocols for the staining of SDS-PAGE gels to visualize separated proteins, and for the electrotransfer of proteins to a membrane support (Western blotting) to enable immunoblotting, for example. This chapter is intended to complement the chapters in this book that require these techniques to be performed. Therefore, detailed examples of why and when these techniques could be used will not be discussed here.
Amino terminal interaction in the prion protein identified using fusion to green fluorescent protein
Resumo:
In contrast to the well-characterized carboxyl domain, the amino terminal half of the mature cellular prion protein has no defined structure. Here, following fusion of mouse prion protein fragments to green fluorescence protein as a reporter of protein stability, we report extreme variability in fluorescence level that is dependent on the prion fragment expressed. In particular, exposure of the extreme amino terminus in the context of a truncated prion protein molecule led to rapid degradation, whereas the loss of only six amino terminal residues rescued high level fluorescence. Study of the precise endpoints and residue identity associated with high fluorescence suggested a domain within the amino terminal half of the molecule defined by a long-range intramolecular interaction between 23KKRPKP28 and 143DWED146 and dependent upon the anti-parallel beta-sheet ending at residue 169 and normally associated with the structurally defined carboxyl terminal domain. This previously unreported interaction may be significant for understanding prion bioactivity and for structural studies aimed at the complete prion structure.
Resumo:
Differential protein expression analysis based on modification of selected amino acids with labelling reagents has become the major method of choice for quantitative proteomics. One such methodology, two-dimensional difference gel electrophoresis (2-D DIGE), uses a matched set of fluorescent N-hydroxysuccinimidyl (NHS) ester cyanine dyes to label lysine residues in different samples which can be run simultaneously on the same gels. Here we report the use of iodoacetylated cyanine (ICy) dyes (for labelling of cysteine thiols, for 2-D DIGE-based redox proteomics. Characterisation of ICy dye labelling in relation to its stoichiometry, sensitivity and specificity is described, as well as comparison of ICy dye with NHS-Cy dye labelling and several protein staining methods. We have optimised conditions for labelling of nonreduced, denatured samples and report increased sensitivity for a subset of thiol-containing proteins, allowing accurate monitoring of redox-dependent thiol modifications and expression changes, Cysteine labelling was then combined with lysine labelling in a multiplex 2-D DIGE proteomic study of redox-dependent and ErbB2-dependent changes in epithelial cells exposed to oxidative stress. This study identifies differentially modified proteins involved in cellular redox regulation, protein folding, proliferative suppression, glycolysis and cytoskeletal organisation, revealing the complexity of the response to oxidative stress and the impact that overexpression of ErbB2 has on this response.
Resumo:
Tungsten carbide/oxide particles have been prepared by the gel precipitation of tungstic acid in the presence of an organic gelling agent [10% ammonium poly(acrylic acid) in water, supplied by Ciba Specialty Chemicals]. The feed solution; a homogeneous mixture of sodium tungstate and ammonium poly(acrylic acid) in water, was dropped from a 1-mm jet into hydrochloric acid saturated hexanol/concentrated hydrochloric acid to give particles of a mixture of tungstic acid and poly(acrylic acid), which, after drying in air at 100 degrees C and heating to 900 degrees C in argon for 2 h, followed by heating in carbon dioxide for a further 2 h and cooling, gives a mixture of WO, WC, and a trace of NaxWO3, with the carbon for the formation of WC being provided by the thermal carbonization of poly(acrylic acid). The pyrolyzed product is friable and easily broken down in a pestle and mortar to a fine powder or by ultrasonics, in water, to form a stable colloid. The temperature of carbide formation by this process is significantly lower (900 degrees C) than that reported for the commercial preparation of tungsten carbide, typically > 1400 degrees C. In addition, the need for prolonged grinding of the constituents is obviated because the reacting moieties are already in intimate contact on a molecular basis. X-ray diffraction, particle sizing, transmission electron microscopy, surface area, and pore size distribution studies have been carried out, and possible uses are suggested. A flow diagram for the process is described.
Resumo:
DIGE is a protein labelling and separation technique allowing quantitative proteomics of two or more samples by optical fluorescence detection of differentially labelled proteins that are electrophoretically separated on the same gel. DIGE is an alternative to quantitation by MS-based methodologies and can circumvent their analytical limitations in areas such as intact protein analysis, (linear) detection over a wide range of protein abundances and, theoretically, applications where extreme sensitivity is needed. Thus, in quantitative proteomics DIGE is usually complementary to MS-based quantitation and has some distinct advantages. This review describes the basics of DIGE and its unique properties and compares it to MS-based methods in quantitative protein expression analysis.
Resumo:
Robotic and manual methods have been used to obtain identification of significantly changing proteins regulated when Schizosaccharomyces pombe is exposed to oxidative stress. Differently treated S. pombe cells were lysed, labelled with CyDye (TM) and analysed by two-dimensional difference gel. electrophoresis. Gel images analysed off-line, using the DeCyder (TM) image analysis software [GE Healthcare, Amersham, UK] allowed selection of significantly regulated proteins. Proteins displaying differential expression were excised robotically for manual digestion and identified by matrix-assisted laser desorption/ionisation - mass spectrometry (MALDI-MS). Additionally the same set of proteins displaying differential expression were automatically cut and digested using a prototype robotic platform. Automated MALDI-MS, peak label assignment and database searching were utilised to identify as many proteins as possible. The results achieved by the robotic system were compared to manual methods. The identification of all significantly altered proteins provides an annotated peroxide stress-related proteome that can be used as a base resource against which other stress-induced proteomic changes can be compared.
Resumo:
Taipei City has put a significant effort toward the implementation of green design and green building schemes towards a sustainable eco-city. Although some of the environmental indicators have not indicated significant progress in environmental improvement, implementing the two schemes has obtained considerable results; therefore, the two schemes are on the right path towards promoting a sustainable eco-city. However, it has to be admitted that the two schemes are a rather “technocratic” set of solutions and eco-centric approach. It is suggested that not only the public sector but also the private sector need to put more effort toward implement the schemes, and the government needs to encourage the private sector to adopt the schemes in practice.
Resumo:
The health benefits of green tea (Camellia sinensis) catechins are becoming increasingly recognised. Amongst the proposed benefits are the maintenance of endothelial function and vascular homeostasis and an associated reduction in atherogenesis and CVD risk. The mounting evidence for the influential effect of green tea catechins on vascular function from epidemiological, human intervention and animal studies is subject to review together with exploration of the potential mechanistic pathways involved. Epigallocatechin-3-gallate, one of the most abundant and widely studied catechin found in green tea, will be prominent in the present review. Since there is a substantial inconsistency in the published data with regards to the impact of green tea catechins on vascular function, evaluation and interpretation of the inter- and intra-study variability is included. In conclusion, a positive effect of green tea catechins on vascular function is becoming apparent. Further studies in animal and cell models using physiological concentrations of catechins and their metabolites are warranted in order to gain some insight into the physiology and molecular basis of the observed beneficial effects.
Resumo:
External reflection FTIR spectroscopy and surface pressure measurements were used to compare conformational changes in the adsorbed structures of three globular proteins at the air/water interface. Of the three proteins studied, lysozyme, bovine serum albumin and P-lactoglobulin, lysozyme was unique in its behaviour. Lysozyme adsorption was slow, taking approximately 2.5 h to reach a surface pressure plateau (from a 0.07 mM solution), and led to significant structural change. The FTIR spectra revealed that lysozyme formed a highly networked adsorbed layer of unfolded protein with high antiparallel beta-sheet content and that these changes occurred rapidly (within 10 min). This non-native secondary structure is analogous to that of a 3D heat-set protein gel, suggesting that the adsorbed protein formed a highly networked interfacial layer. Albumin and P-lactoglobulin adsorbed rapidly (reaching a plateau within 10 min) and with little chance to their native secondary structure.