961 resultados para graphics processing unit (GPU)
Resumo:
The characteristics of the hot deformation of Zr-2.5Nb (wt-%) in the temperature range 650-950 degrees C and in the strain rate range 0.001-100 s(-1) have been studied using hot compression testing. Two different preform microstructures: equiaxed (alpha + beta) and beta transformed have been investigated. For this study, the approach of processing maps has been adopted and their interpretation carried out using the dynamic materials model. The efficiency of power dissipation given by [2m/(m + 1)], where m is the strain rate sensitivity, is plotted as a function of temperature and strain rate to obtain a processing map. A domain of dynamic recrystallisation has been identified in the maps of equiaxed (alpha + beta) and beta transformed preforms. In the case of equiaxed (alpha + beta), the stress-strain curves are steady state and the dynamic recrystallisation domain in the map occurs with a peak efficiency of 45% at 850 degrees C and 0.001 s(-1). On the other hand the beta transformed preform exhibits stress-strain curves with continuous flow softening. The corresponding processing map shows a domain of dynamic recrystallisation occurring by the shearing of alpha platelets followed by globularisation with a peak efficiency of 54% at 750 degrees C and 0.001 s(-1). The characteristics of dynamic recrystallisation are analysed on the basis of a simple model which considers the rates of nucleation and growth of recrystallised gains. Calculations show that these two rates are nearly equal and that the nucleation of dynamic recrystallisation is essentially controlled by mechanical recovery involving the cross-slip of screw dislocations. Analysis of flow instabilities using a continuum criterion revealed that Zi-2.5Nb exhibits flow localisation at temperatures lower than 700 degrees C and strain rates higher than 1 s(-1).
Resumo:
Drop tube provides a low-cost alternative to study the influence of microgravity in materials processing. In the present paper, the current status of the drop tubes and associated experiments on materials processing are reviewed. Emphasis is placed on the advantages and limitations of these studies. It is pointed out that despite size limitation, large opportunities exist to study the fundamental aspects of the influence of gravity in materials processing.
Resumo:
The characteristics of hot deformation of beta-quenched Zr-2.5Nb-0.5Cu in the temperature range 650-1050 degrees C and in the strain rate range 0.001-100 s(-1) have been studied using hot compression testing. For this study, the approach of processing maps has been adopted and their interpretation done using the Dynamic Materials Model. The efficiency of power dissipation given by [2m/(m + 1)], where m is strain rate sensitivity, is plotted as a function of temperature and strain rate to obtain a processing map. The processing map for Zr-2.5Nb-0.5Cu within (alpha + beta) phase field showed a domain of dynamic recrystallization, occurring by shearing of alpha-platelets followed by spheroidization, with a peak efficiency of 48% at 750 degrees C and 0.001 s(-1). The stress-strain curves in this domain had features of continuous flow softening and all these are similar to that in Zr-2.5Nb alloy. In the beta-phase field, a second domain with a peak efficiency of 47% occurred at 1050 degrees C and 0.001 s(-1) and this domain is correlated with the superplasticity of beta-phase. The beta-deformation characteristics of this alloy are similar to that observed in pure beta-zirconium with large grain size. Analysis of flow instabilities using a continuum criterion revealed that the Zr-2.5Nb-0.5Cu exhibits flow localization at temperatures higher than 800 degrees C and strain rates higher than about 30 s(-1) and that the addition of copper to Zr-2.5Nb reduces its susceptibility to flow instability, particularly in the (alpha + beta) phase field.
Resumo:
The development of microstructure in 316L stainless steel during industrial hot forming operations including press forging (strain rate of 0 . 15 s(-1)), rolling/extrusion (strain rate of 2-8 . 8 s(-1)), and hammer forging (strain rate of 100 s(-1)) at different temperatures in the range 600-1200 degrees C was studied with a view to validating the predictions of the processing map. The results showed that good col relation existed between the regimes indicated in the map and the product microstructures. The 316L stainless steel exhibited unstable flow in the form of flow localisation when hammer forged at temperatures above 900 degrees C, rolled below 1000 degrees C, or press forged below 900 degrees C. All these conditions must therefore be avoided in mechanical processing of the material. Conversely, in order to obtain defect free microstructures, ideally the material should be rolled at temperatures above 1100 degrees C, press forged at temperatures above 1000 degrees C, or hammer forged in the temperature range 600-900 degrees C. (C) 1996 The Institute of Materials.
Resumo:
The hot deformation behavior of hot isostatically pressed (HIP) NIMONIC AP-1 superalloy is characterized using processing maps in the temperature range 950-degrees-C to 1200-degrees-C and strain rate range 0.001 to 100 s-1. The dynamic materials model has been used for developing the processing maps which show the variation of the efficiency of power dissipation given by [2m/(m +1)] with temperature and strain rate, with m being the strain rate sensitivity of flow stress. The processing map revealed a domain of dynamic recrystallization with a peak efficiency of 40 pct at 1125-degrees-C and 0.3 s-1, and these are the optimum parameters for hot working. The microstructure developed under these conditions is free from prior particle boundary (PPB) defects, cracks, or localized shear bands. At 100 s-1 and 1200-degrees-C, the material exhibits inter-crystalline cracking, while at 0.001 s-1, the material shows wedge cracks at 1200-degrees-C and PPB cracking at 1000-degrees-C. Also at strain rates higher than 10 s-1, adiabatic shear bands occur; the limiting conditions for this flow instability are accurately predicted by a continuum criterion based on the principles of irreversible thermodynamics of large plastic flow.
Resumo:
The constitutive flow behavior of a metal matrix composite (MMC) with 2124 aluminum containing 20 vol pct silicon carbide particulates under hot-working conditions in the temperature range of 300 °C to 550 °C and strain-rate range of 0.001 to 1 s-1 has been studied using hot compression testing. Processing maps depicting the variation of the efficiency of power dissipation given by [2m/(m + 1)] (wherem is the strain-rate sensitivity of flow stress) with temperature and strain rate have been established for the MMC as well as for the matrix material. The maps have been interpreted on the basis of the Dynamic Materials Model (DMM). [3] The MMC exhibited a domain of superplasticity in the temperature range of 450 °C to 550 °C and at strain rates less than 0.1 s-1. At 500 °C and 1 s-1 strain rate, the MMC undergoes dynamic recrystallization (DRX), resulting in a reconstitution of microstructure. In comparison with the map for the matrix material, the DRX domain occurred at a strain rate higher by three orders of magnitude. At temperatures lower than 400 °C, the MMC exhibited dynamic recovery, while at 550 °C and 1 s-1, cracking occurred at the prior particle boundaries (representing surfaces of the initial powder particles). The optimum temperature and strain-rate combination for billet conditioning of the MMC is 500 °C and 1 s-1, while secondary metalworking may be done in the super- plasticity domain. The MMC undergoes microstructural instability at temperatures lower than 400 °C and strain rates higher than 0.1 s-1.
Resumo:
Laser processing of structure sensitive hypereutectic ductile iron, a cast alloy employed for dynamically loaded automative components, was experimentally investigated over a wide range of process parameters: from power (0.5-2.5 kW) and scan rate (7.5-25 mm s(-1)) leading to solid state transformation, all the way through to melting followed by rapid quenching. Superfine dendritic (at 10(5) degrees C s(-1)) or feathery (at 10(4) degrees C s(-1)) ledeburite of 0.2-0.25 mu m lamellar space, gamma-austenite and carbide in the laser melted and martensite in the transformed zone or heat-affected zone were observed, depending on the process parameters. Depth of geometric profiles of laser transformed or melt zone structures, parameters such as dendrile arm spacing, volume fraction of carbide and surface hardness bear a direct relationship with the energy intensity P/UDb2, (10-100 J mm(-3)). There is a minimum energy intensity threshold for solid state transformation hardening (0.2 J mm(-3)) and similarly for the initiation of superficial melting (9 J mm(-3)) and full melting (15 J mm(-3)) in the case of ductile iron. Simulation, modeling and thermal analysis of laser processing as a three-dimensional quasi-steady moving heat source problem by a finite difference method, considering temperature dependent energy absorptivity of the material to laser radiation, thermal and physical properties (kappa, rho, c(p)) and freezing under non-equilibrium conditions employing Scheil's equation to compute the proportion of the solid enabled determination of the thermal history of the laser treated zone. This includes assessment of the peak temperature attained at the surface, temperature gradients, the freezing time and rates as well as the geometric profile of the melted, transformed or heat-affected zone. Computed geometric profiles or depth are in close agreement with the experimental data, validating the numerical scheme.
Resumo:
The hot workability of an Al-Mg-Si alloy has been studied by conducting constant strain-rate compression tests. The temperature range and strain-rate regime selected for the present study were 300-550 degrees C and 0.001-1 s(-1), respectively. On the basis of true stress data, the strain-rate sensitivity values were calculated and used for establishing processing maps following the dynamic materials model. These maps delineate characteristic domains of different dissipative mechanisms. Two domains of dynamic recrystallization (DRX) have been identified which are associated with the peak efficiency of power dissipation (34%) and complete reconstitution of as-cast microstructure. As a result, optimum hot ductility is achieved in the DRX domains. The strain rates at which DRX domains occur are determined by the second-phase particles such as Mg2Si precipitates and intermetallic compounds. The alloy also exhibits microstructural instability in the form of localized plastic deformation in the temperature range 300-350 degrees C and at strain rate 1 s(-1).
Resumo:
An attempt is made to present some challenging problems (mainly to the technically minded researchers) in the development of computational models for certain (visual) processes which are executed with, apparently, deceptive ease by the human visual system. However, in the interest of simplicity (and with a nonmathematical audience in mind), the presentation is almost completely devoid of mathematical formalism. Some of the findings in biological vision are presented in order to provoke some approaches to their computational models, The development of ideas is not complete, and the vast literature on biological and computational vision cannot be reviewed here. A related but rather specific aspect of computational vision (namely, detection of edges) has been discussed by Zucker, who brings out some of the difficulties experienced in the classical approaches.Space limitations here preclude any detailed analysis of even the elementary aspects of information processing in biological vision, However, the main purpose of the present paper is to highlight some of the fascinating problems in the frontier area of modelling mathematically the human vision system.
Resumo:
An oxidative binaphthol coupling with 65% yield and 65% selectivity has been accomplished using 7-deoxycholic acid as a chiral template.
Resumo:
A simple route for tailoring emissions in the visible wavelength region by chemically coupling quantum dots composed of ZnSe and CdS is reported. coupled quantum dots offer a novel route for tuning electronic transitions via band-offset engineering at the material interface. This novel class of asymmetric. coupled quantum structures may offer a basis for a diverse set of building blocks for optoelectronic devices, ultrahigh density memories, and quantum information processing.
Resumo:
Using a dynamic materials model, processing and instability maps have been developed for near-alpha titanium alloy 685 in the temperature range 775-1025 degrees C and strain-rate range of 0.001-10 s(-1) to optimise its hot workability. The alloy's beta-transus temperature lies at about 1020 degrees C. The material undergoes superplasticity with a peak efficiency of 80% at 975 degrees C and 0.001 s(-1), which are the optimum parameters for alpha-beta working. The occurrence of superplasticity is attributed to two-phase microduplex structure, higher strain-rate sensitivity, low flow stress and sigmoidal variation between log flow stress and log strain rate. The material also exhibits how localisation due to adiabatic shear-band formation up to its beta-transus temperature with strain rates greater than 0.02 s(-1) and thus cracking along these regions. (C) 1997 Published by Elsevier Science S.A.