838 resultados para glândula adrenal
Resumo:
The ACTH receptor (MC2R) is expressed predominantly in the adrenal cortex, but is one of five G protein-coupled, seven-transmembrane melanocortin receptors (MCRs), all of which bind ACTH to some degree. Testing of MC2R activity is difficult because most cells express endogenous MCRs; hence, ACTH will elicit background activation of assayable reporter systems. Inactivating mutations of MC2R lead to hereditary unresponsiveness to ACTH, also known as familial glucocorticoid deficiency (FGD). These patients are usually seen in early childhood with very low cortisol concentrations, normal mineralocorticoids, hyperpigmentation, and increased bodily growth. Several MC2R mutations have been reported in FGD, but assays of the activities of these mutants are cumbersome. We saw two patients with typical clinical findings of FGD. Genetic analysis showed that patient 1 was homozygous for the mutation R137W, and patient 2 was a compound heterozygote for S74I and Y254C. We tested the activity of these mutations in OS-3 cells, which are unresponsive to ACTH but have intact downstream cAMP signal transduction. OS-3 cells transfected with a cAMP-responsive luciferase reporter plasmid (pCREluc) were unresponsive to ACTH, but cotransfection with a vector expressing human MC2R increased luciferase activity more than 40-fold. Addition of ACTH to cells cotransfected with the pCREluc reporter and wild-type MC2R activated luciferase expression with a 50% effective concentration of 5.5 x 10(-9) M ACTH, which is similar to previously reported values. By contrast, the MC2R mutant R137W had low activity, and the S74I or Y254C mutants elicited no measurable response. This assay provides excellent sensitivity in an easily assayed transient transfection system, providing a more rapid and efficient measurement of ACTH receptor activity.
Resumo:
BACKGROUND: Depressed mood following an acute coronary syndrome (ACS) is a risk factor for future cardiac morbidity. Hypothalamic-pituitary-adrenal (HPA) axis dysregulation is associated with depression, and may be a process through which depressive symptoms influence later cardiac health. Additionally, a history of depression predicts depressive symptoms in the weeks following ACS. The purpose of this study was to determine whether a history of depression and/or current depression are associated with the HPA axis dysregulation following ACS. METHOD: A total of 152 cardiac patients completed a structured diagnostic interview, a standardized depression questionnaire and a cortisol profile over the day, 3 weeks after an ACS. Cortisol was analysed using: the cortisol awakening response (CAR), total cortisol output estimated using the area under the curve method, and the slope of cortisol decline over the day. RESULTS: Total cortisol output was positively associated with history of depression, after adjustment for age, gender, marital status, ethnicity, smoking status, body mass index (BMI), Global Registry of Acute Cardiac Events (GRACE) risk score, days in hospital, medication with statins and antiplatelet compounds, and current depression score. Men with clinically diagnosed depression after ACS showed a blunted CAR, but the CAR was not related to a history of depression. CONCLUSIONS: Patients with a history of depression showed increased total cortisol output, but this is unlikely to be responsible for associations between depression after ACS and later cardiac morbidity. However, the blunted CAR in patients with severe depression following ACS indicates that HPA dysregulation is present.
Resumo:
Numerous naturalistic, experimental, and mechanistic studies strongly support the notion that-as part of fight-or-flight response-hemostatic responses to acute psychosocial stress result in net hypercoagulability, which would protect a healthy organism from bleeding in case of injury. Sociodemographic factors, mental states, and comorbidities are important modulators of the acute prothrombotic stress response. In patients with atherosclerosis, exaggerated and prolonged stress-hypercoagulability might accelerate coronary thrombus growth following plaque rupture. Against a background risk from acquired prothrombotic conditions and inherited thrombophilia, acute stress also might trigger venous thromboembolic events. Chronic stressors such as job strain, dementia caregiving, and posttraumatic stress disorder as well as psychological distress from depressive and anxiety symptoms elicit a chronic low-grade hypercoagulable state that is no longer viewed as physiological but might impair vascular health. Through activation of the sympathetic nervous system, higher order cognitive processes and corticolimbic brain areas shape the acute prothrombotic stress response. Hypothalamic-pituitary-adrenal axis and autonomic dysfunction, including vagal withdrawal, are important regulators of hemostatic activity with longer lasting stress. Randomized placebo-controlled trials suggest that several cardiovascular drugs attenuate the acute prothrombotic stress response. Behavioral interventions and psychotropic medications might mitigate chronic low-grade hypercoagulability in stressed individuals, but further studies are clearly needed. Restoring normal hemostatic function with biobehavioral interventions bears the potential to ultimately decrease the risk of thrombotic diseases.
Resumo:
BACKGROUND: Decisions regarding whether to administer intensive care to extremely premature infants are often based on gestational age alone. However, other factors also affect the prognosis for these patients. METHODS: We prospectively studied a cohort of 4446 infants born at 22 to 25 weeks' gestation (determined on the basis of the best obstetrical estimate) in the Neonatal Research Network of the National Institute of Child Health and Human Development to relate risk factors assessable at or before birth to the likelihood of survival, survival without profound neurodevelopmental impairment, and survival without neurodevelopmental impairment at a corrected age of 18 to 22 months. RESULTS: Among study infants, 3702 (83%) received intensive care in the form of mechanical ventilation. Among the 4192 study infants (94%) for whom outcomes were determined at 18 to 22 months, 49% died, 61% died or had profound impairment, and 73% died or had impairment. In multivariable analyses of infants who received intensive care, exposure to antenatal corticosteroids, female sex, singleton birth, and higher birth weight (per each 100-g increment) were each associated with reductions in the risk of death and the risk of death or profound or any neurodevelopmental impairment; these reductions were similar to those associated with a 1-week increase in gestational age. At the same estimated likelihood of a favorable outcome, girls were less likely than boys to receive intensive care. The outcomes for infants who underwent ventilation were better predicted with the use of the above factors than with use of gestational age alone. CONCLUSIONS: The likelihood of a favorable outcome with intensive care can be better estimated by consideration of four factors in addition to gestational age: sex, exposure or nonexposure to antenatal corticosteroids, whether single or multiple birth, and birth weight. (ClinicalTrials.gov numbers, NCT00063063 [ClinicalTrials.gov] and NCT00009633 [ClinicalTrials.gov].).
Resumo:
Child abuse and neglect are universal risk factors for delinquency, violence and aggression; this phenomenon is known as the cycle of violence. Despite a wide body of research demonstrating this phenomenon, the processes which mediate this relationship remain largely unknown. One potentially relevant result of abuse and neglect may be disruptions in the development of the body’s stress response, specifically the function of the Hypothalamic-Pituitary-Adrenal (HPA) axis. The HPA-axis, and its end-product, cortisol, may play a role in regulating aggressive behavior, but this function may be disrupted following abuse and neglect. Another risk factor for aggression, psychopathy, may mediate the cycle of violence or independently contribute to aggressive behavior. This study examined the relationship between child abuse and neglect, HPA-axis function, psychopathy and aggression. History of abuse was measured using a self-report questionnaire, the Childhood Trauma Questionnaire. Using a within-subject, placebo-controlled, counter-balanced dosing design, 67 adults were given an acute dose of 20mg cortisol as a challenge to the HPA-axis. Following dosing, measures of cortisol response were obtained through saliva samples, and state-aggressive behavior was measured by a laboratory task, the Point-Subtraction Aggression Paradigm (PSAP). Basal measures of cortisol were obtained prior to dosing. Psychopathy and a trait-measure of aggression were assessed through self-report questionnaires. PSAP data and trait-aggression scores were normalized and summed for an overall aggression score. Linear regression analyses indicated that a history of abuse and neglect robustly predicted aggression, supporting the cycle of violence hypothesis. Further, abuse and neglect predicted a diminished HPA-axis response to the cortisol challenge. Although a diminished HPA-axis response significantly predicted increased aggression, mediation analysis revealed that HPA-axis reactivity did not mediate a significant portion of the effect of abuse and neglect on aggression. However, HPA-axis reactivity did mediate part of the effect, indicating that HPA-axis function may be a factor in the cycle of violence. Psychopathy robustly predicted increased aggression. Although the results indicate that cortisol, psychopathy and HPA-axis function are involved in the cycle of violence, further research is required to better understand the complex interaction of these factors.
Resumo:
Tyrosine hydroxylase (TH), the initial and rate limiting enzyme in the catecholaminergic biosynthetic pathway, is phosphorylated on multiple serine residues by multiple protein kinases. Although it has been demonstrated that many protein kinases are capable of phosphorylating and activating TH in vitro, it is less clear which protein kinases participate in the physiological regulation of catecholamine synthesis in situ. These studies were designed to determine if protein kinase C (PK-C) plays such a regulatory role.^ Stimulation of intact bovine adrenal chromaffin cells with phorbol esters results in stimulation of catecholamine synthesis, tyrosine hydroxylase phosphorylation and activation. These responses are both time and concentration dependent, and are specific for those phorbol ester analogues which activate PK-C. RP-HPLC analysis of TH tryptic phosphopeptides indicate that PK-C phosphorylates TH on three putative sites. One of these (pepetide 6) is the same as that phosphorylated by both cAMP-dependent protein kinase (PK-A) and calcium/calmodulin-dependent protein kinase (CaM-K). However, two of these sites (peptides 4 and 7) are unique, and, to date, have not been shown to be phosphorylated by any other protein kinase. These peptides correspond to those which are phosphorylated with a slow time course in response to stimulation of chromaffin cells with the natural agonist acetylcholine. The activation of TH produced by PK-C is most closely correlated with the phosphorylation of peptide 6. But, as evident from pH profiles of tyrosine hydroxylase activity, phosphorylation of peptides 4 and 7 affect the expression of the activation produced by phosphorylation of peptide 6.^ These data support a role for PK-C in the control of TH activity, and suggest a two stage model for the physiological regulation of catecholamine synthesis by phosphorylation in response to cholinergic stimulation. An initial fast response, which appears to be mediated by CaM-K, and a slower, sustained response which appears to be mediated by PK-C. In addition, the multiple site phosphorylation of TH provides a mechanism whereby the regulation of catecholamine synthesis appears to be under the control of multiple protein kinases, and allows for the convergence of multiple, diverse physiological and biochemical signals. ^
Resumo:
Despite much attention, the function of oligosaccharide chains of glycoproteins remains largely unknown. Our understanding of oligosaccharide function in vivo has been limited to the use of reagents and targeted mutations that eliminate entire oligosaccharide chains. However, most, if not all biological functions for oligosaccharides have been attributed to specific terminal sequences on these oligosaccharides, yet there have been few studies to examine the consequences of modifying terminal oligosaccharide structures in vivo. To address this issue, mice were created bearing a targeted mutation in $\beta$1,4-galactosyltransferase, an enzyme responsible for elaboration of many of the proposed biologically-active carbohydrate epitopes. Most galactosyltransferase-null mice died within the first few weeks after birth and were characterized by stunted growth, thin skin, sparse hair, and dehydration. In addition, the adrenal cortices were poorly stratified and spermatogenesis was delayed. The few surviving adults had puffy skin (myxedema), difficulty delivering pups at birth (dystocia), and failed to lactate (agalactosis). All of these defects are consistant with endocrine insufficiency, which was confirmed by markedly decreased levels of serum thyroxine. The anterior pituitary gland appeared functionally delayed in newborn mutant mice, since the constituent cells were quiescent and nonsecretory, unlike that of control littermates. However, the anterior pituitary acquired a normal secretory phenotype during neonatal development, although it remained abnormally small and its glycoprotein hormones were devoid of $\beta$1,4-galactosyl residues. These results support in vitro studies suggesting that incomplete glycosylation of pituitary hormones leads to the creation of hormone antagonists that down regulate subsequent endocrine function producing polyglandular endocrine insufficiency. More surprisingly, the fact that some mice survive this neonatal period indicates the presence of a previously unrecognized compensatory pathway for glycoprotein hormone glycosylation and/or action.^ In addition to its well-studied biosynthetic function in the Golgi complex, a GalTase isoform is also expressed on the sperm surface where it functions as a gamete receptor during fertilization by binding to its oligosaccharide ligand on the egg coat glycoprotein, ZP3. Aggregation of GalTase by multivalent ZP3 oligosaccharides activates a G-protein cascade leading to the acrosome reaction. Although GalTase-null males are fertile, the mutant sperm bind less ZP3 than wild-type sperm, and are unable to undergo the acrosome reaction in response to either zona pellucida glycoproteins or to anti-GalTase anti-serum, as do wild-type sperm. However, mutant and wild-type sperm undergo the acrosome reaction normally in response to calcium ionophore which bypasses the requirement for ZP3 binding. Interestingly, the phenotype of the GalTase-null sperm is reciprocal to that of sperm that overexpress surface GalTAse and which bind more ZP3 leading to precocious acrosome reactions. These results confirm that GalTase functions as at least one of the sperm receptors for ZP3, and that GalTase participates in the ZP3-induced signal transduction pathway during zona pellucida-induced acrosome reactions. ^
Resumo:
Serotonin (5-HT) neurotransmission deficits have been implicated in impulsive aggression. A Trp-free beverage of amino acids competitively inhibits Trp uptake into the brain for 5-HT synthesis and also lowers endogenous plasma Trp for several hours. This has worsened mood and/or increased aggressive behavior, especially in hostile persons or those with histories of depression. In 24 community-recruited men (12 each with and without significant aggression histories), aggressive and impulsive behavior in the laboratory was assessed before and after plasma Trp depletion and Trp loading. In the aggression model, subjects were provoked by periodic subtractions of participation earnings, and these subtractions were blamed on a ficitious other participant. Aggression was measured as the responses the subject made to subtract money from his antagonist. Impulsiveness was operationalized as: (1) the choice of smaller reward after a shorter delay over having to wait longer to receive a larger reward, and (2) “false alarm” commission errors in a modified Continuous Performance Task, which represent a failure to inhibit responding to stimuli similar (but not identical) to target stimuli. Finally, plasma cortisol and Trp were measured under each condition immediately following a aggression testing session when subjects were highly provoked. I hypothesized that 5-HT may tonically modulate (inhibit) the hypothalmnic-pituitary-adrenal stress response, such that Trp depletion may enhance the cortisol response to high provocation in aggressive men. ^ Trp depletion had no effect in the laboratory tasks purported to measure impulsive behavior, and failed to cause increases in aggressive behavior under low provocation conditions. Under higher provocation, however, aggressive responses we re elevated under Trp-depleted conditions relative to Trp-loaded conditions in aggressive men, whereas the reverse was true in nonaggressive men. Cortisol levels nonsignificantly paralled the group differences in aggression under Trp-depleted and Trp-loaded conditions. Aggressive men achieved lower plasma Trp levels after Trp loading than did nonaggressive men, possibly due to heavy alcohol use histories. The high post-loading plasma Trp levels in nonaggressive men tended also to correlate with their aggressive responding rates, due perhaps to increases in other psychoactive Trp metabolites. ^
Resumo:
Etomidate is an imidazole-derived hypnotic agent preferentially used for rapid sequence induction of anaesthesia because of its favourable haemodynamic profile. However, 11β-hydroxylase inhibition causes adrenal insufficiency with potentially fatal consequences in specific populations. We review the arguments against the liberal administration of etomidate in critically ill, and especially septic, patients. This review considered only high-quality and prospective studies with a low risk of bias. Three major effects have been observed with the clinical use of a single dose of etomidate. First, independent of the clinical setting, etomidate causes adrenal dysfunction via 11β-hydroxylase inhibition ranging from 12 to 48 h, making the drug unsuitable for use in elective interventions. Second, in a systematic review with meta-analyses, including 3715 septic patients, the relative risk of death with etomidate was 1.22 (95% confidence interval 1.11 to 1.35). Based on this statistically significant and clinically relevant increase in mortality, a single dose of etomidate has to be avoided in patients with septic shock. Third, in small randomised controlled trials, a single dose of etomidate in trauma patients was associated with an increased incidence of pneumonia (56.7 vs. 25.9% in controls), prolonged intensive care stay (6.3 vs. 1.5 days) and prolonged hospital stay (11.6 vs. 6.4 days). Based on these randomised controlled trials, the use of etomidate should be avoided in unstable trauma patients. Midazolam and ketamine are two valid alternatives with similar intubation and haemodynamic conditions as etomidate but without its adverse effects. Therefore, for safety reasons, etomidate should be avoided in the critical conditions of sepsis and trauma
Resumo:
BACKGROUND Community-acquired pneumonia (CAP) is the third-leading infectious cause of death worldwide. The standard treatment of CAP has not changed for the past fifty years and its mortality and morbidity remain high despite adequate antimicrobial treatment. Systemic corticosteroids have anti-inflammatory effects and are therefore discussed as adjunct treatment for CAP. Available studies show controversial results, and the question about benefits and harms of adjunct corticosteroid therapy has not been conclusively resolved, particularly in the non-critical care setting. METHODS/DESIGN This randomized multicenter study compares a treatment with 7 days of prednisone 50 mg with placebo in adult patients hospitalized with CAP independent of severity. Patients are screened and enrolled within the first 36 hours of presentation after written informed consent is obtained. The primary endpoint will be time to clinical stability, which is assessed every 12 hours during hospitalization. Secondary endpoints will be, among others, all-cause mortality within 30 and 180 days, ICU stay, duration of antibiotic treatment, disease activity scores, side effects and complications, value of adrenal function testing and prognostic hormonal and inflammatory biomarkers to predict outcome and treatment response to corticosteroids. Eight hundred included patients will provide an 85% power for the intention-to-treat analysis of the primary endpoint. DISCUSSION This largest to date double-blind placebo-controlled multicenter trial investigates the effect of adjunct glucocorticoids in 800 patients with CAP requiring hospitalization. It aims to give conclusive answers about benefits and risks of corticosteroid treatment in CAP. The inclusion of less severe CAP patients will be expected to lead to a relatively low mortality rate and survival benefit might not be shown. However, our study has adequate power for the clinically relevant endpoint of clinical stability. Due to discontinuing glucocorticoids without tapering after seven days, we limit duration of glucocorticoid exposition, which may reduce possible side effects. TRIAL REGISTRATION 7 September 2009 on ClinicalTrials.gov: NCT00973154.
Resumo:
Regulation of androgen production is poorly understood. Adrenarche is the physiologic event in mid-childhood when the adrenal zona reticularis starts to produce androgens through specific expression of genes for enzymes and cofactors necessary for androgen synthesis. Similarly, expression and activities of same genes and products are deregulated in hyperandrogenic disorders such as the polycystic ovary syndrome (PCOS). Numerous studies revealed involvement of several signaling pathways stimulated through G-protein coupled receptors or growth factors transmitting their effects through cAMP- or non-cAMP-dependent signaling. Overall a complex network regulates androgen synthesis targeting involved genes and proteins at the transcriptional and post-translational levels. Newest players in the field are the DENND1A gene identified in PCOS patients and the MAPK14 which is the kinase phosphorylating CYP17 for enhanced lyase activity. Next generation sequencing studies of PCOS patients and transcriptome analysis of androgen producing tissues or cell models provide newer tools to identify modulators of androgen synthesis.
Resumo:
CONTEXT Human NR5A1/SF-1 mutations cause 46,XY disorder of sex development (DSD) with broad phenotypic variability, and rarely cause adrenal insufficiency although SF-1 is an important transcription factor for many genes involved in steroidogenesis. In addition, the Sf-1 knockout mouse develops obesity with age. Obesity might be mediated through Sf-1 regulating activity of brain-derived neurotrophic factor (BDNF), an important regulator of energy balance in the ventromedial hypothalamus. OBJECTIVE To characterize novel SF-1 gene variants in 4 families, clinical, genetic and functional studies were performed with respect to steroidogenesis and energy balance. PATIENTS 5 patients with 46,XY DSD were found to harbor NR5A1/SF-1 mutations including 2 novel variations. One patient harboring a novel mutation also suffered from adrenal insufficiency. METHODS SF-1 mutations were studied in cell systems (HEK293, JEG3) for impact on transcription of genes involved in steroidogenesis (CYP11A1, CYP17A1, HSD3B2) and in energy balance (BDNF). BDNF regulation by SF-1 was studied by promoter assays (JEG3). RESULTS Two novel NR5A1/SF-1 mutations (Glu7Stop, His408Profs*159) were confirmed. Glu7Stop is the 4th reported SF-1 mutation causing DSD and adrenal insufficiency. In vitro studies revealed that transcription of the BDNF gene is regulated by SF-1, and that mutant SF-1 decreased BDNF promoter activation (similar to steroid enzyme promoters). However, clinical data from 16 subjects carrying SF-1 mutations showed normal birth weight and BMI. CONCLUSIONS Glu7Stop and His408Profs*159 are novel SF-1 mutations identified in patients with 46,XY DSD and adrenal insufficiency (Glu7Stop). In vitro, SF-1 mutations affect not only steroidogenesis but also transcription of BDNF which is involved in energy balance. However, in contrast to mice, consequences on weight were not found in humans with SF-1 mutations.
Resumo:
Defects of androgen biosynthesis cause 46,XY disorder of sexual development (DSD). All steroids are produced from cholesterol and the early steps of steroidogenesis are common to mineralocorticoid, glucocorticoid and sex steroid production. Genetic mutations in enzymes and proteins supporting the early biosynthesis pathways cause adrenal insufficiency (AI), DSD and gonadal insufficiency. The classic androgen biosynthesis defects with AI are lipoid CAH, CYP11A1 and HSD3B2 deficiencies. Deficiency of CYP17A1 rarely causes AI, and HSD17B3 or SRD5A2 deficiencies only cause 46,XY DSD and gonadal insufficiency. All androgen biosynthesis depends on 17,20 lyase activity of CYP17A1 which is supported by P450 oxidoreductase (POR) and cytochrome b5 (CYB5). Therefore 46,XY DSD with apparent 17,20 lyase deficiency may be due to mutations in CYP17A1, POR or CYB5. Illustrated by patients harboring mutations in SRD5A2, normal development of the male external genitalia depends largely on dihydrotestosterone (DHT) which is converted from circulating testicular testosterone (T) through SRD5A2 in the genital skin. In the classic androgen biosynthetic pathway, T is produced from DHEA and androstenedione/-diol in the testis. However, recently found mutations in AKR1C2/4 genes in undervirilized 46,XY individuals have established a role for a novel, alternative, backdoor pathway for fetal testicular DHT synthesis. In this pathway, which has been first elucidated for the tammar wallaby pouch young, 17-hydroxyprogesterone is converted directly to DHT by 5α-3α reductive steps without going through the androgens of the classic pathway. Enzymes AKR1C2/4 catalyse the critical 3αHSD reductive reaction which feeds 17OH-DHP into the backdoor pathway. In conclusion, androgen production in the fetal testis seems to utilize two pathways but their exact interplay remains to be elucidated.
Resumo:
Prior research has shown that mothers with Interpersonal violence-related posttraumatic stress disorder (IPV-PTSD) report greater difficulty in parenting their toddlers. Relative to their frequent early exposure to violence and maltreatment, these mothers display dysregulation of their hypothalamic pituitary adrenal axis (HPA-axis), characterized by hypocortisolism. Considering methylation of the promoter region of the glucocorticoid receptor gene NR3C1 as a marker for HPA-axis functioning, with less methylation likely being associated with less circulating cortisol, the present study tested the hypothesis that the degree of methylation of this gene would be negatively correlated with maternal IPV-PTSD severity and parenting stress, and positively correlated with medial prefrontal cortical (mPFC) activity in response to video-stimuli of stressful versus non-stressful mother-child interactions. Following a mental health assessment, 45 mothers and their children (ages 12-42 months) participated in a behavioral protocol involving free-play and laboratory stressors such as mother-child separation. Maternal DNA was extracted from saliva. Interactive behavior was rated on the CARE-Index. During subsequent fMRI scanning, mothers were shown films of free-play and separation drawn from this protocol. Maternal PTSD severity and parenting stress were negatively correlated with the mean percentage of methylation of NR3C1. Maternal mPFC activity in response to video-stimuli of mother-child separation versus play correlated positively to NR3C1 methylation, and negatively to maternal IPV-PTSD and parenting stress. Among interactive behavior variables, child cooperativeness in play was positively correlated with NR3C1 methylation. Thus, the present study is the first published report to our knowledge, suggesting convergence of behavioral, epigenetic, and neuroimaging data that form a psychobiological signature of parenting-risk in the context of early life stress and PTSD.
Resumo:
CONTEXT Complex steroid disorders such as P450 oxidoreductase deficiency or apparent cortisone reductase deficiency may be recognized by steroid profiling using chromatographic mass spectrometric methods. These methods are highly specific and sensitive, and provide a complete spectrum of steroid metabolites in a single measurement of one sample which makes them superior to immunoassays. The steroid metabolome during the fetal-neonatal transition is characterized by a) the metabolites of the fetal-placental unit at birth, b) the fetal adrenal androgens until its involution 3-6 months postnatally, and c) the steroid metabolites produced by the developing endocrine organs. All these developmental events change the steroid metabolome in an age- and sex-dependent manner during the first year of life. OBJECTIVE The aim of this study was to provide normative values for the urinary steroid metabolome of healthy newborns at short time intervals in the first year of life. METHODS We conducted a prospective, longitudinal study to measure 67 urinary steroid metabolites in 21 male and 22 female term healthy newborn infants at 13 time-points from week 1 to week 49 of life. Urine samples were collected from newborn infants before discharge from hospital and from healthy infants at home. Steroid metabolites were measured by gas chromatography-mass spectrometry (GC-MS) and steroid concentrations corrected for urinary creatinine excretion were calculated. RESULTS 61 steroids showed age and 15 steroids sex specificity. Highest urinary steroid concentrations were found in both sexes for progesterone derivatives, in particular 20α-DH-5α-DH-progesterone, and for highly polar 6α-hydroxylated glucocorticoids. The steroids peaked at week 3 and decreased by ∼80% at week 25 in both sexes. The decline of progestins, androgens and estrogens was more pronounced than of glucocorticoids whereas the excretion of corticosterone and its metabolites and of mineralocorticoids remained constant during the first year of life. CONCLUSION The urinary steroid profile changes dramatically during the first year of life and correlates with the physiologic developmental changes during the fetal-neonatal transition. Thus detailed normative data during this time period permit the use of steroid profiling as a powerful diagnostic tool.