905 resultados para four passed YDFA
Resumo:
Study objectives: There is a possibility that lower air, moisture and light protection could impact on physico-chemical stability of medicines inside multi-compartment compliance aids (MCCAs), although this has not yet been proved. The objectives of the study were to examine the physico-chemical stability of atenolol tablets stored in a compliance aid at room temperature, and at elevated temperature and humidity to simulate practice conditions. Methods: Atenolol 100 mg tablets in 28-chamber, plastic compliance aids with transparent lids were stored for four weeks at room temperature and at 40°C with 75% relative humidity. Tablets were also stored at room temperature in original packaging and Petri dishes. Physical tests were conducted to standards as laid down in the British Pharmacopoeia 2005, and dissolution to those of the United States Pharmacopoeia volume 24. Chemical stability was assessed by a validated high-performance liquid chromatography (HPLC) method. Results: Tablets at room temperature in original packaging, in compliance aids and Petri dishes remained the same in appearance and passed physico-chemical tests. Tablets exposed to 40°C with 75% relative humidity in compliance aids passed tests for uniformity of weight, friability and chemical stability but became pale and moist, softer (82 newtons ± 4; p< 0.0001) than tablets in the original packaging (118 newtons ± 6), more friable (0.14% loss of mass) compared with other tablets (0.005%), and failed the tests for disintegration (>15 minutes) and dissolution (only 15% atenolol released at 30 minutes). Conclusion: Although chemical stability was unaffected, storage in compliance aids at 40°C with 75% relative humidity softened atenolol tablets, prolonged disintegration time and hindered dissolution which could significantly reduce bioavailability. This formulation could be suitable for storage in compliance aids at 25°C, but not in hotter, humid weather.
Resumo:
This Note outlines the further development of a system of models for the estimation of the costs of livestock diseases first presented by Bennett (2003). The models have been developed to provide updated and improved estimates of the costs associated with 34 endemic diseases of livestock in Great Britain, using border prices and including assessments of the impact of diseases on human health and animal welfare. Results show that, of the diseases studied, mastitis has the highest costs for cattle diseases, enzootic abortion for sheep diseases, swine influenza for pig diseases and salmonellosis for poultry diseases.
Resumo:
The response of seed survival to storage duration and environment (temperature and moisture content) in the four tropical tree species: Cedrela odorata L., Ceiba pentandra (L.) Gaertn., Dalbergia spruceana Benth. and Tabebuia alba (Cham.) Sandwith. from Amazonia conformed to the seed viability equation of Ellis and Roberts. Estimates of the seed viability constants to calculate seed longevity in these species are provided.
Resumo:
Background: Variation in carrying capacity and population return rates is generally ignored in traditional studies of population dynamics. Variation is hard to study in the field because of difficulties controlling the environment in order to obtain statistical replicates, and because of the scale and expense of experimenting on populations. There may also be ethical issues. To circumvent these problems we used detailed simulations of the simultaneous behaviours of interacting animals in an accurate facsimile of a real Danish landscape. The models incorporate as much as possible of the behaviour and ecology of skylarks Alauda arvensis, voles Microtus agrestis, a ground beetle Bembidion lampros and a linyphiid spider Erigone atra. This allows us to quantify and evaluate the importance of spatial and temporal heterogeneity on the population dynamics of the four species. Results: Both spatial and temporal heterogeneity affected the relationship between population growth rate and population density in all four species. Spatial heterogeneity accounted for 23–30% of the variance in population growth rate after accounting for the effects of density, reflecting big differences in local carrying capacity associated with the landscape features important to individual species. Temporal heterogeneity accounted for 3–13% of the variance in vole, skylark and spider, but 43% in beetles. The associated temporal variation in carrying capacity would be problematic in traditional analyses of density dependence. Return rates were less than one in all species and essentially invariant in skylarks, spiders and beetles. Return rates varied over the landscape in voles, being slower where there were larger fluctuations in local population sizes. Conclusion: Our analyses estimated the traditional parameters of carrying capacities and return rates, but these are now seen as varying continuously over the landscape depending on habitat quality and the mechanisms of density dependence. The importance of our results lies in our demonstration that the effects of spatial and temporal heterogeneity must be accounted for if we are to have accurate predictive models for use in management and conservation. This is an area which until now has lacked an adequate theoretical framework and methodology.
Resumo:
Artificial pod inoculation was used to compare the relative aggressiveness of seven Colombian isolates of Moniliophthora roreri (the causal agent of moniliasis or frosty pod disease), representing four major genetic groupings of the pathogen in cacao (cocoa), when applied to five diverse cacao genotypes (ICS-1, ICS-95, TSH-565, SCC-61 and CAP-34) at La Suiza Experimental Farm, Santander Department, Colombia. The following variables were evaluated 9 weeks after inoculation of 2- to 3-month-old pods with spore suspensions (1.2 x 10(5) spores mL(-1)): (i) disease incidence (DI); (ii) external severity (ES); and (iii) internal severity (IS). IS was found to be of greatest value in classifying the reaction of the host genotype against M. roreri. Genetic variation reported between isolates and cacao genotypes was not matched by similar diversity in their aggressiveness. All isolates were generally highly aggressive against most cacao genotypes, with only two isolates showing reduced IS and ES reactions. There was considerable variation between clones in the IS and ES scores, but one cultivated clone (ICS-95) displayed a significant level of resistance against all seven isolates. This clone may be useful in cacao breeding initiatives for resistance to moniliasis of cacao.
Resumo:
The effect of temperature on early vegetative growth, leaf chlorophyll fluorescence and chlorophyll content was examined on four genotypes of cacao (Amelonado, AMAZ 15–15, SCA 6 and SPEC 54/1). A controlled environment glasshouse was used to simulate the temperature conditions of three cacao-growing regions (Bahia, Brazil; Tafo, Ghana and Lower Perak, Malaysia) over the course of a year. Base temperatures calculated from increments in main stem growth varied from 18.6°C for AMAZ 15/15 to 20.8°C for SPEC 54/1. Temporal variation in Fv/Fm observed for two of the clones (SCA 6 and SPEC 54/1) in two of the compartments were correlated with temperature differences over time. Significant differences were also recorded between genotypes in leaf chlorophyll content. It was shown that variation over time in leaf chlorophyll content could be quantified accurately as a function of temperature and light integral. The results imply that genetic variability exists in cacao in response to temperature stress.