873 resultados para forward contract
Resumo:
This paper presents a methodology for deriving business process descriptions based on terms in business contract. The aim is to assist process modellers in structuring collaborative interactions between parties, including their internal processes, to ensure contract-compliant behaviour. The methodology requires a formal model of contracts to facilitate process derivations and to form a basis for contract analysis tools and run-time process execution.
Resumo:
This paper presents an approach for translating legalese expression of business contracts into candidate business activities and processes while ensuring their compliance with contract. This is a progressive refinement using logic-based formalism to capture contract semantics and to serve as an intermediate step for transformation. Particular value of this approach is for those organisations that consider moving towards new approaches to enterprise contract management and applying them to their future contracts.
Resumo:
The performance of feed-forward neural networks in real applications can be often be improved significantly if use is made of a-priori information. For interpolation problems this prior knowledge frequently includes smoothness requirements on the network mapping, and can be imposed by the addition to the error function of suitable regularization terms. The new error function, however, now depends on the derivatives of the network mapping, and so the standard back-propagation algorithm cannot be applied. In this paper, we derive a computationally efficient learning algorithm, for a feed-forward network of arbitrary topology, which can be used to minimize the new error function. Networks having a single hidden layer, for which the learning algorithm simplifies, are treated as a special case.
Resumo:
In this paper we consider four alternative approaches to complexity control in feed-forward networks based respectively on architecture selection, regularization, early stopping, and training with noise. We show that there are close similarities between these approaches and we argue that, for most practical applications, the technique of regularization should be the method of choice.
Resumo:
This thesis is a study of the generation of topographic mappings - dimension reducing transformations of data that preserve some element of geometric structure - with feed-forward neural networks. As an alternative to established methods, a transformational variant of Sammon's method is proposed, where the projection is effected by a radial basis function neural network. This approach is related to the statistical field of multidimensional scaling, and from that the concept of a 'subjective metric' is defined, which permits the exploitation of additional prior knowledge concerning the data in the mapping process. This then enables the generation of more appropriate feature spaces for the purposes of enhanced visualisation or subsequent classification. A comparison with established methods for feature extraction is given for data taken from the 1992 Research Assessment Exercise for higher educational institutions in the United Kingdom. This is a difficult high-dimensional dataset, and illustrates well the benefit of the new topographic technique. A generalisation of the proposed model is considered for implementation of the classical multidimensional scaling (¸mds}) routine. This is related to Oja's principal subspace neural network, whose learning rule is shown to descend the error surface of the proposed ¸mds model. Some of the technical issues concerning the design and training of topographic neural networks are investigated. It is shown that neural network models can be less sensitive to entrapment in the sub-optimal global minima that badly affect the standard Sammon algorithm, and tend to exhibit good generalisation as a result of implicit weight decay in the training process. It is further argued that for ideal structure retention, the network transformation should be perfectly smooth for all inter-data directions in input space. Finally, there is a critique of optimisation techniques for topographic mappings, and a new training algorithm is proposed. A convergence proof is given, and the method is shown to produce lower-error mappings more rapidly than previous algorithms.
Resumo:
This paper presents a forecasting technique for forward energy prices, one day ahead. This technique combines a wavelet transform and forecasting models such as multi- layer perceptron, linear regression or GARCH. These techniques are applied to real data from the UK gas markets to evaluate their performance. The results show that the forecasting accuracy is improved significantly by using the wavelet transform. The methodology can be also applied to forecasting market clearing prices and electricity/gas loads.
Resumo:
This paper presents a forecasting technique for forward electricity/gas prices, one day ahead. This technique combines a Kalman filter (KF) and a generalised autoregressive conditional heteroschedasticity (GARCH) model (often used in financial forecasting). The GARCH model is used to compute next value of a time series. The KF updates parameters of the GARCH model when the new observation is available. This technique is applied to real data from the UK energy markets to evaluate its performance. The results show that the forecasting accuracy is improved significantly by using this hybrid model. The methodology can be also applied to forecasting market clearing prices and electricity/gas loads.
Resumo:
Current methods for retrieving near surface winds from scatterometer observations over the ocean surface require a foward sensor model which maps the wind vector to the measured backscatter. This paper develops a hybrid neural network forward model, which retains the physical understanding embodied in ¸mod, but incorporates greater flexibility, allowing a better fit to the observations. By introducing a separate model for the mid-beam and using a common model for the fore- and aft-beams, we show a significant improvement in local wind vector retrieval. The hybrid model also fits the scatterometer observations more closely. The model is trained in a Bayesian framework, accounting for the noise on the wind vector inputs. We show that adding more high wind speed observations in the training set improves wind vector retrieval at high wind speeds without compromising performance at medium or low wind speeds.
Resumo:
This study examined the antecedents and outcomes of psychological contract breach as well as why and how psychological contract breach is related to these outcomes. Respondents were Hong Kong Chinese employees (N=152). Results showed organizational change and history of contract breach to be related to psychological contract breach which, in turn, was related to turnover intentions, psychological withdrawal behaviour, and civic virtue. Further, trust in employer fully mediated the relationship between psychological contract breach and the work outcomes of psychological withdrawal behaviour and civic virtue but partially mediated the psychological contract breach–turnover intentions relationship. Lastly, interactional justice failed to moderate the relationship between psychological contract breach and the work outcomes.
The new pharmacy contract and its effects on the public health contribution of community pharmacists